分析:

最小割(一开始我没看出来...后来经过提点,大致理解...),不选则割的思想。

我们先这样考虑,将和选理相关的和S相连,与选文相关的和T相连,如果没有第二问,那么建图就是简单的S连cnt,cnt连T,流量分别为对应的喜悦值,那么在这个图的基础上,考虑第二问,因为我们需要将所有不选的边割掉,那么,我们可以考虑新建两个点,一个连接S,流量为喜悦值,一个连接T,流量为喜悦值,那么将这两个节点连向相应的要求节点(比如两个人同时学理/文),流量为inf,这样,我们每次割掉一个S连向cnt的边的时候,必须将所有的S连向tot的边割掉,就相当于是题目的要求了,最后得到最小割,用总和减去最小割就好了。

附上代码:(文理分科)

#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <iostream>
#include <queue>
#include <cstdlib>
using namespace std;
#define N 30005
#define p(i,j) ((i-1)*m+j)
#define inf 10000000
#define S 0
#define T 30004
int head[N],cnt,dep[N],a[105][105],b[105][105],sum,n,m;
struct node
{
int to,next,val;
}e[1000010];
int dx[4]={0,1,-1,0};int dy[4]={1,0,0,-1};
void add(int x,int y,int z){e[cnt].to=y;e[cnt].next=head[x];e[cnt].val=z;head[x]=cnt++;}
void insert(int x,int y,int z){add(x,y,z);add(y,x,0);}
int bfs()
{
memset(dep,-1,sizeof(dep));
queue <int>q;q.push(S);dep[S]=1;
while(!q.empty())
{
int x=q.front();q.pop();
for(int i=head[x];i!=-1;i=e[i].next)
{
int to1=e[i].to;
if(dep[to1]==-1&&e[i].val)dep[to1]=dep[x]+1,q.push(to1);
}
}
return dep[T]==-1?0:1;
}
int dfs(int x,int maxf)
{
if(x==T)return maxf;
int tflow=maxf,nowf;
for(int i=head[x];i!=-1;i=e[i].next)
{
int to1=e[i].to;
if(dep[to1]==dep[x]+1&&e[i].val)
{
nowf=dfs(to1,min(e[i].val,tflow));
if(!nowf)dep[to1]=-1;
tflow-=nowf,e[i].val-=nowf,e[i^1].val+=nowf;
if(!tflow)break;
}
}
return maxf-tflow;
}
int main()
{
memset(head,-1,sizeof(head));
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
int x;
scanf("%d",&x);sum+=x;
insert(S,p(i,j),x);
}
}
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
int x;
scanf("%d",&x);sum+=x;
insert(p(i,j),T,x);
}
}
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
scanf("%d",&a[i][j]);sum+=a[i][j];
}
}
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
scanf("%d",&b[i][j]);sum+=b[i][j];
}
}
int tot=n*m;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
tot+=2;
insert(S,tot-1,a[i][j]);insert(tot,T,b[i][j]);
insert(tot-1,p(i,j),inf);insert(p(i,j),tot,inf);
for(int k=0;k<4;k++)
{
int tx=dx[k]+i,ty=dy[k]+j;
if(tx>=1&&tx<=n&&ty<=m&&ty>=1)
{
insert(tot-1,p(tx,ty),inf);
insert(p(tx,ty),tot,inf);
}
}
}
}
int ans=0;
while(bfs())ans+=dfs(S,1<<30);
printf("%d\n",sum-ans);
return 0;
}

附上代码:(happiness)

#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <iostream>
#include <queue>
#include <cstdlib>
using namespace std;
#define N 60005
#define p(i,j) ((i-1)*m+j)
#define inf 10000000
#define S 0
#define T 60004
int head[N],cnt,dep[N],a[105][105],b[105][105],n,m;long long sum;
struct node
{
int to,next,val;
}e[2000010];
int dx[4]={0,1,-1,0};int dy[4]={1,0,0,-1};
void add(int x,int y,int z){e[cnt].to=y;e[cnt].next=head[x];e[cnt].val=z;head[x]=cnt++;}
void insert(int x,int y,int z){add(x,y,z);add(y,x,0);}
int bfs()
{
memset(dep,-1,sizeof(dep));
queue <int>q;q.push(S);dep[S]=1;
while(!q.empty())
{
int x=q.front();q.pop();
for(int i=head[x];i!=-1;i=e[i].next)
{
int to1=e[i].to;
if(dep[to1]==-1&&e[i].val)dep[to1]=dep[x]+1,q.push(to1);
}
}
return dep[T]==-1?0:1;
}
int dfs(int x,int maxf)
{
if(x==T)return maxf;
int tflow=maxf,nowf;
for(int i=head[x];i!=-1;i=e[i].next)
{
int to1=e[i].to;
if(dep[to1]==dep[x]+1&&e[i].val)
{
nowf=dfs(to1,min(e[i].val,tflow));
if(!nowf)dep[to1]=-1;
tflow-=nowf,e[i].val-=nowf,e[i^1].val+=nowf;
if(!tflow)break;
}
}
return maxf-tflow;
}
int main()
{
memset(head,-1,sizeof(head));
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
int x;
scanf("%d",&x);sum+=x;
insert(S,p(i,j),x);
}
}
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
int x;
scanf("%d",&x);sum+=x;
insert(p(i,j),T,x);
}
}
for(int i=1;i<n;i++)
{
for(int j=1;j<=m;j++)
{
scanf("%d",&a[i][j]);sum+=a[i][j];
}
}
for(int i=1;i<n;i++)
{
for(int j=1;j<=m;j++)
{
scanf("%d",&b[i][j]);sum+=b[i][j];
}
}
int tot=n*m;
for(int i=1;i<n;i++)
{
for(int j=1;j<=m;j++)
{
tot+=2;
insert(S,tot-1,a[i][j]);insert(tot,T,b[i][j]);
insert(tot-1,p(i,j),inf);insert(tot-1,p(i+1,j),inf);
insert(p(i,j),tot,inf);insert(p(i+1,j),tot,inf);
}
}
for(int i=1;i<=n;i++)
{
for(int j=1;j<m;j++)
{
scanf("%d",&a[i][j]);sum+=a[i][j];
}
}
for(int i=1;i<=n;i++)
{
for(int j=1;j<m;j++)
{
scanf("%d",&b[i][j]);sum+=b[i][j];
}
}
for(int i=1;i<=n;i++)
{
for(int j=1;j<m;j++)
{
tot+=2;
insert(S,tot-1,a[i][j]);insert(tot,T,b[i][j]);
insert(tot-1,p(i,j),inf);insert(tot-1,p(i,j+1),inf);
insert(p(i,j),tot,inf);insert(p(i,j+1),tot,inf);
}
}
long long ans=0;
while(bfs())ans+=dfs(S,1<<30);
printf("%d\n",sum-ans);
return 0;
}

  

文理分科 BZOJ3894 & happiness BZOJ2127的更多相关文章

  1. [bzoj3894]文理分科_网络流_最小割

    文理分科 bzoj-3894 题目大意:题目链接. 注释:略. 想法: 这种题也是一种套路. 我们新建一个点表示收益点. 然后把所有的收益都加一起,求最小割表示代价即可. Code: #include ...

  2. 【BZOJ3894】文理分科(最小割)

    [BZOJ3894]文理分科(最小割) 题面 BZOJ Description 文理分科是一件很纠结的事情!(虽然看到这个题目的人肯定都没有纠 结过) 小P所在的班级要进行文理分科.他的班级可以用一个 ...

  3. 【BZOJ3894】文理分科 最小割

    [BZOJ3894]文理分科 Description 文理分科是一件很纠结的事情!(虽然看到这个题目的人肯定都没有纠结过) 小P所在的班级要进行文理分科.他的班级可以用一个n*m的矩阵进行描述,每个格 ...

  4. 【bzoj3894】文理分科 网路流

    [bzoj3894]文理分科 2015年3月25日3,4002 Description  文理分科是一件很纠结的事情!(虽然看到这个题目的人肯定都没有纠 结过)  小P所在的班级要进行文理分科.他的班 ...

  5. Bzoj3894 文理分科

    Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 667  Solved: 389 Description  文理分科是一件很纠结的事情!(虽然看到这个题 ...

  6. BZOJ3894文理分科——最小割

    题目描述  文理分科是一件很纠结的事情!(虽然看到这个题目的人肯定都没有纠 结过)  小P所在的班级要进行文理分科.他的班级可以用一个n*m的矩阵进行 描述,每个格子代表一个同学的座位.每位同学必须从 ...

  7. 【BZOJ3894】文理分科

    最小割劲啊 原题:  文理分科是一件很纠结的事情!(虽然看到这个题目的人肯定都没有纠 结过)  小P所在的班级要进行文理分科.他的班级可以用一个n*m的矩阵进行 描述,每个格子代表一个同学的座位.每位 ...

  8. BZOJ3894:文理分科(最大流)(同BZoj3438)

    文理分科是一件很纠结的事情!(虽然看到这个题目的人肯定都没有纠 结过) 小P所在的班级要进行文理分科.他的班级可以用一个n*m的矩阵进行 描述,每个格子代表一个同学的座位.每位同学必须从文科和理科中选 ...

  9. BZOJ3894:文理分科——题解

    http://www.lydsy.com/JudgeOnline/problem.php?id=3894 文理分科是一件很纠结的事情!(虽然看到这个题目的人肯定都没有纠结过) 小P所在的班级要进行文理 ...

随机推荐

  1. CSS参考手册

    CSS 属性 CSS 属性组: 动画 背景 边框和轮廓 盒(框) 颜色 内容分页媒体 定位 可伸缩框 字体 生成内容 网格 超链接 行框 列表 外边距 Marquee 多列 内边距 分页媒体 定位 打 ...

  2. FineReport中如何制作树数据集来实现组织树报表

    1. 问题描述 FineReport,组织树报表中由id与父id来实现组织树报表,若层级数较多时,对每个单元格设置过滤条件和形态会比较繁琐,因此FineReport提供了一种特殊的数据集——树数据集, ...

  3. Nginx的性能优化

    1.优化worker进程个数: 在高并发.高访问量的WEB服务场景,需要事先启动更多的nginx进程,以保证快速响应并处理大量并发用户的请求,优化nginx进程个数的配置项就是,在nginx.conf ...

  4. 有关 Android Studio 重复引入包的问题和解决方案

    虽然相同包名相同类名的文件在不同 SDK 中出现的概率极低,但是一旦出现,处理起来就比较棘手.最好的解决方案就是联系提供 SDK 的技术人员反映问题,让其通过修改源码重新打包一个新的 Jar 包. 还 ...

  5. 微信小程序开发--背景图显示

    这两天开发微信小程序,在设置背景图片时,发现在wxss里面设置 background-image:(url) 属性,不管是开发工具还是线上都无法显示.经过查资料发现,background-image ...

  6. hadoop中实现java网络爬虫

    这一篇网络爬虫的实现就要联系上大数据了.在前两篇java实现网络爬虫和heritrix实现网络爬虫的基础上,这一次是要完整的做一次数据的收集.数据上传.数据分析.数据结果读取.数据可视化. 需要用到 ...

  7. 新知食APP架构分析--北京识物科技有限公司旗下产品

    俗话说不打无准备之仗,这次真是有点懵逼了,建议大家去面试的时候,尤其是去小型互联网公司的时候,如果你想比其他人有竞争力,那么你要研究一下当前他的公司正在开发产品,他们的业务类型是什么样的,比如他们公司 ...

  8. 【Python】生成词云

    import matplotlib.pyplot as plt from wordcloud import WordCloud import jieba text_from_file_with_apa ...

  9. Web服务架构风格之REST

    REST(Representational State Transfer)是一种Web服务的架构,其目的是创建具有良好扩展性的分布式系统.它的约束包含: 使用C/S模型.client和server之间 ...

  10. 学习dbms_parallel_execute包

    一.简介 ORACLE11g R2版本的新特性之一就是引进了DBMS_PARALLEL_EXECUTE包,使用DBMS_PARALLEL_EXECUTE包批量并行递增式的更新表. 更多ORACLE11 ...