1. tf.nn.dynamic_rnn(cell,inputs,sequence_length=None, initial_state=None,dtype=None, parallel_iterations=None,swap_memory=False, time_major=False, scope=None)

tf.nn.dynamic_rnn的作用:

  对于单个 RNNCell ,使用call 函数进行运算时,只在序列时间上前进了一步 ,如使用 x1、 ho 得到此h1,通过 x2 、h1 得到 h2 等 。

  如果序列长度为n,要调用n次call函数,比较麻烦。对此提供了一个tf.nn.dynamic_mn函数,使用该函数相当于调用了n次call函数。通过{ho, x1 , x2,…,xn} 直接得到{h1 , h2,…,hn} 。

  具体来说,设输入数据inputs格式为(batch_size, time_steps, input_size),其中batch_size表示batch的大小。time_steps序列长度,input_size输入数据单个序列单个时间维度上固有的长度。得到的outputs是time_steps步里所有的输出。它的形状为(batch_size, time_steps, cell.output_size)。state 是最后一步的隐状态,形状为(batch_size, cell . state_size) 。

参数:

cell

自己定义的LSTM的细胞单元,如是convLSTM,自己写也可以。

inputs

一个三维的变量,[batchsize,timestep,input_size],搭配time_major=False。其中batch_size表示batch的大小。time_steps序列长度,input_size输入数据单个序列单个时间维度上固有的长度。

这里还补充一点,就是叫dynamic的原因,就是输入数据的time_step不一定要相同,如果长短不一,会自动跟短的补0,但是处理时候,不会处理0,在0前面就截止了.这就是dynamic对比static的好处.

time_major

If true,   these Tensors must be shaped [max_time, batch_size, depth].
If false, these Tensors must be shaped `[batch_size, max_time, depth]

返回:

outputs:

If time_major == False, this will be a Tensor shaped: [batch_size, max_time, cell.output_size].(默认这种方式)

If time_major == True , this will be a Tensor shaped: [max_time, batch_size, cell.output_size].

cell.output_size就是cell的num_units

  这里output是每个cell输出的叠加,比如我输入数据[1,5,100,100,3],是一个长度为5 的视频序列,则返回output为[1,5,100,100,3],5个cell细胞的输出状态,state是一个元组类型的数据,有(c和h两个变量)就是存储LSTM最后一个cell的输出状态,我一般用的是output的最后一个输出.用state输出也行,就是取元组中的h变量.

state:

If cell.state_size is an int, this will be shaped [batch_size,cell.state_size].

If it is a TensorShape,             this will be shaped [batch_size] + cell.state_size.

If it is a (possibly nested) tuple of ints or TensorShape, this will be a tuple having the corresponding shapes.

If cells are LSTMCells state will be a tuple containing a LSTMStateTuple for each cell.

cell.state_size就是cell的num_units

例子:

  1. #create a BasicRNNCell
  2. rnn_cell = tf.nn.rnn_cell.BasicRNNCell(hidden_size)
  3. #'outputs' is a tensor of shape [batch_size, max_time, cell_state_size]
  4.  
  5. #defining initial state
  6. initial_state = rnn_cell.zero_state(batch_size, dtype=tf.float32)
  7.  
  8. #'state' is a tensor of shape [batch_size, cell_state_size]
  9. outputs, state = tf.nn.dynamic_rnn(cell=rnn_cell,inputs=input_data,initial_state=initial_state,dtype=tf.float32)
  1. #create 2 LSTMCells
  2. rnn_layers = [tf.nn.rnn_cell.LSTMCell(size) for size in [128, 256]]
  3.  
  4. #create a RNN cell composed sequentially of a number of RNNCells
  5. multi_rnn_cell = tf.nn.rnn_cell.MultiRNNCell(rnn_layers)
  6.  
  7. #'outputs' is a tensor of shape [batch_size, max_time, 256]
  8. #'state' is a N-tuple where N is the number of LSTMCells containing a
  9. #tf.contrib.rnn.LSTMStateTuple for each cell
  10. outputs, state = tf.nn.dynamic_rnn(cell=multi_rnn_cell,inputs=data,dtype=tf.float32)

tf.nn.dynamic_rnn的更多相关文章

  1. 深度学习原理与框架-递归神经网络-RNN_exmaple(代码) 1.rnn.BasicLSTMCell(构造基本网络) 2.tf.nn.dynamic_rnn(执行rnn网络) 3.tf.expand_dim(增加输入数据的维度) 4.tf.tile(在某个维度上按照倍数进行平铺迭代) 5.tf.squeeze(去除维度上为1的维度)

    1. rnn.BasicLSTMCell(num_hidden) #  构造单层的lstm网络结构 参数说明:num_hidden表示隐藏层的个数 2.tf.nn.dynamic_rnn(cell, ...

  2. tensorflow笔记6:tf.nn.dynamic_rnn 和 bidirectional_dynamic_rnn:的输出,output和state,以及如何作为decoder 的输入

    一.tf.nn.dynamic_rnn :函数使用和输出 官网:https://www.tensorflow.org/api_docs/python/tf/nn/dynamic_rnn 使用说明: A ...

  3. tf.contrib.rnn.static_rnn与tf.nn.dynamic_rnn区别

    tf.contrib.rnn.static_rnn与tf.nn.dynamic_rnn区别 https://blog.csdn.net/u014365862/article/details/78238 ...

  4. TF-卷积函数 tf.nn.conv2d 介绍

    转自 http://www.cnblogs.com/welhzh/p/6607581.html 下面是这位博主自己的翻译加上测试心得 tf.nn.conv2d是TensorFlow里面实现卷积的函数, ...

  5. tf.nn.embedding_lookup TensorFlow embedding_lookup 函数最简单实例

    tf.nn.embedding_lookup TensorFlow embedding_lookup 函数最简单实例 #!/usr/bin/env python # -*- coding: utf-8 ...

  6. tf.nn.conv2d 和 tf.nn.max_pool 中 padding 分别为 'VALID' 和 'SAME' 的直觉上的经验和测试代码

    这个地方一开始是迷糊的,写代码做比较分析,总结出直觉上的经验. 某人若想看精准的解释,移步这个网址(http://blog.csdn.net/fireflychh/article/details/73 ...

  7. 【TensorFlow基础】tf.add 和 tf.nn.bias_add 的区别

    1. tf.add(x,  y, name) Args: x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, ...

  8. tf.nn.conv2d。卷积函数

    tf.nn.conv2d是TensorFlow里面实现卷积的函数,参考文档对它的介绍并不是很详细,实际上这是搭建卷积神经网络比较核心的一个方法,非常重要 tf.nn.conv2d(input, fil ...

  9. 深度学习原理与框架-图像补全(原理与代码) 1.tf.nn.moments(求平均值和标准差) 2.tf.control_dependencies(先执行内部操作) 3.tf.cond(判别执行前或后函数) 4.tf.nn.atrous_conv2d 5.tf.nn.conv2d_transpose(反卷积) 7.tf.train.get_checkpoint_state(判断sess是否存在

    1. tf.nn.moments(x, axes=[0, 1, 2])  # 对前三个维度求平均值和标准差,结果为最后一个维度,即对每个feature_map求平均值和标准差 参数说明:x为输入的fe ...

随机推荐

  1. Embedded SW uses STL or not

    As the complexity increasing of embedded software, more and more projects/products use C++ as the im ...

  2. vue的watcher 关于数组和对象

    数组 不能被监听到的情况 1.直接下标赋值(但对象直接修改原有属性值可以渲染视图,虽然也监听不到) 2.修改数组length 解决方法: this.$set(this.arr,index,val) p ...

  3. VS 中的几种注释方法

    在代码的后面添加形如下面注释: //TODO: (未实现)…… //UNDONE:(没有做完)…… //HACK:(修改)…… 等到再次打开VS的时候,找到 :视图>任务列表 即可显示所有带有T ...

  4. FastAdmin 新年福袋进行中

    FastAdmin 新年福袋进行中 2019新年福袋活动正在进行中 https://www.fastadmin.net/act/20190101/springfestival.html

  5. 艰苦的编译boost python (失败)

    1.下载 boost_1_67_0 2.在目录下执行 bootstrap 3.将python36添加到path环境变量 4.执行 b2 --with-python,将会声场如下dll 2018/04/ ...

  6. MongoDB之 的Rollback讲解及避免

    首先,rollback到底是什么意思呢?在关系型数据库中因为有事务的概念,操作数据后在没有commit之前是可以执行rollback命令进行数据回退的. 而在单实例mongodb中,写入就写入了,删除 ...

  7. HanLP 关键词提取算法分析详解

    HanLP 关键词提取算法分析详解 l 参考论文:<TextRank: Bringing Order into Texts> l TextRank算法提取关键词的Java实现 l Text ...

  8. C#:匿名类型

    匿名类型和var关键字是Visual C# 3.0提供的一个新特性,var是隐式类型而并不是类型javascript中的var. var user = new { Id = 1, Name = &qu ...

  9. 【java】一维数组

    数组概念: 同一种类型数据的集合,实际数组也是一个容器. 定义方式: //定义方法1:元素类型 [] 数组名 =new 元素类型 [数组元素个数或数组长度] 如 int [] arry =new in ...

  10. 分布式超级账本Hyperledger里zookeeper的作用

    Zookeeper是一种在分布式系统中被广泛用来作为:分布式状态管理.分布式协调管理.分布式配置管理.和分布式锁服务的集群.kafka增加和减少服务器都会在Zookeeper节点上触发相应的事件kaf ...