Description

DotR里面的英雄只有一个属性——力量。

他们需要购买装备来提升自己的力量值,每件装备都可以使佩戴它的英雄的力量值提高固定的点数,所以英雄的力量值等于它购买的所有装备的力量值之和。

装备分为基本装备和高级装备两种。基本装备可以直接从商店里面用金币购买,而高级装备需要用基本
装备或者较低级的高级装备来合成,合成不需要附加的金币。装备的合成路线可以用一棵树来表示。

比如,Sange and Yasha的合成需要Sange,Yasha和Sange and Yasha Recipe Scroll三样物品。其中Sange又要用Ogre Axe, Belt
 of Giant Strength和 Sange Recipe Scroll合成。

每件基本装备都有数量限制,这限制了你不能无限制地合成某些性价比很高的装备。

现在,英雄Spectre有M个金币,他想用这些钱购买装备使自己的力量值尽量高。你能帮帮他吗?他会教你魔法Haunt(幽灵附体)作为回报的。

(1 <= n <= 51) 和 m (0 <= m <= 2,000)

Solution

一道搁置了很久的神题。

一看过去,一棵树形合成路线,子树的选择与能否合成根有关,而且要分配一个金币,最终获得最高收益。而且还有物品的限制。

所以,就是一道树形依赖背包题目了。

但是状态不是很好设,因为子树根的装备可能留下,也可能等着合成更高级的装备。

所以状态中必须要记录i根节点的子树,合成多少个i要用于上面的合成

设f[i][j][k]表示,以i为根的子树,合成j个i用于上面的合成,总共花费k元钱,也就是购买叶子花费k元。

转移的时候,

先把每个子树的答案算出来。

回溯到x后,外层枚举l表示合成几个x

然后依次选择每个子树,用树形背包。

注意,这里每个子树都要选择合成至少l*need[y]个,need[x]表示x合成一个父亲所需要的个数。

所以,不能像一般的背包,每个子树都要选择。

用分组背包,g[tot][j]表示,考虑了前tot个子树,花费j元钱,得到的最大力量。(每个子树都满足至少有l*need[y])个

g[tot][j]=max(g[tot-1][j-k]+f[y][l*nd[y]][k])

统计完了之后,

再枚举一个j,表示,l中留下j个合成x上一层的装备。

f[x][j][k]=max(g[tot][k]+(l-j)*P[x])

要注意的是,为了保证用了l*nd[y]个,必须令g,f初值是-inf

0肯定是不行的。那就可能会用少于l*nd[y]的钱就合成了l*nd个,虽然总力量是0,但是也可能是一个最优解。

有的时候,为了转移合法,必须把初值设置为极大或者极小值。

这样,每次的最优解,就必定会从这里出来。

可以顺便dp一下合成每个x所需要的价值,以及x合成的上限,可以减少循环的长度。

Code

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int M=+;
const int N=;
const int inf=0x3f3f3f3f;
int n,m;
int L[N],P[N],C[N];
int nd[N];
bool ba[N];
struct node{
int nxt,to;
}e[*N];
int hd[N],cnt;
void add(int x,int y){
e[++cnt].nxt=hd[x];
e[cnt].to=y;
hd[x]=cnt;
}
void dp(int x){
if(ba[x]){
L[x]=min(L[x],m/C[x]);
return;
}
for(int i=hd[x];i;i=e[i].nxt){
int y=e[i].to;
dp(y);
C[x]+=C[y]*nd[y];
L[x]=min(L[x],L[y]/nd[y]);
}
L[x]=min(L[x],m/C[x]); }
int f[N][][M];
int g[N][M];
int rt;
bool du[N];
void dfs(int x){
if(ba[x]){
for(int l=;l<=L[x];l++){
for(int j=;j<=l;j++){
f[x][j][l*C[x]]=P[x]*(l-j);
}
}
return ;
} for(int i=hd[x];i;i=e[i].nxt){
int y=e[i].to;
dfs(y);
} for(int l=;l<=L[x];l++){
int now=; for(int i=hd[x];i;i=e[i].nxt){
int y=e[i].to;
now++;
memset(g[now],-0x3f,sizeof g[now]);
for(int j=;j<=m;j++){
for(int k=;k<=j;k++){
g[now][j]=max(g[now][j],g[now-][j-k]+f[y][l*nd[y]][k]);
}
} }
for(int h=;h<=l;h++){
for(int k=;k<=m;k++){
if(g[now][k]+(l-h)*P[x]>f[x][h][k]) {
f[x][h][k]=g[now][k]+(l-h)*P[x]; } }
} }
}
int main()
{
scanf("%d%d",&n,&m);
char op;int s;
memset(L,inf,sizeof L);
for(int i=;i<=n;i++){
scanf("%d ",&P[i]);
op=getchar();
if(op=='B'){
ba[i]=;//is a leaf
du[i]=;
scanf("%d%d",&C[i],&L[i]);
}
else{
scanf("%d",&s);
int son;
for(int j=;j<=s;j++){
scanf("%d",&son);
scanf("%d",&nd[son]);
du[son]=;
add(i,son);
}
}
} for(int i=;i<=n;i++) if(!du[i]) rt=i; dp(rt); memset(f,-inf,sizeof f);
dfs(rt); int ans=;
for(int j=;j<=L[rt];j++){
for(int k=;k<=m;k++){
ans=max(ans,f[rt][j][k]);
}
}
printf("%d",ans);
return ;
}

[JSOI2008]魔兽地图的更多相关文章

  1. BZOJ [JSOI2008]魔兽地图DotR

    1017: [JSOI2008]魔兽地图DotR Time Limit: 30 Sec  Memory Limit: 162 MBSubmit: 1243  Solved: 532[Submit][S ...

  2. 【BZOJ1017】[JSOI2008]魔兽地图(动态规划)

    [BZOJ1017][JSOI2008]魔兽地图(动态规划) 题面 BZOJ 洛谷 题解 状态设一下,\(f[i][j][k]\)表示第\(i\)个物品,有\(j\)个用于合成,总花费为\(k\)的最 ...

  3. 【bzoj1017】[JSOI2008]魔兽地图DotR

    1017: [JSOI2008]魔兽地图DotR Time Limit: 30 Sec  Memory Limit: 162 MBSubmit: 1658  Solved: 755[Submit][S ...

  4. [BZOJ1017][JSOI2008]魔兽地图DotR 树形dp

    1017: [JSOI2008]魔兽地图DotR Time Limit: 30 Sec  Memory Limit: 162 MBSubmit: 2597  Solved: 1010[Submit][ ...

  5. 1017: [JSOI2008]魔兽地图DotR - BZOJ

    Description DotR (Defense of the Robots) Allstars是一个风靡全球的魔兽地图,他的规则简单与同样流行的地图DotA (Defense of the Anc ...

  6. [JSOI2008]魔兽地图(树形dp)

    DotR (Defense of the Robots) Allstars是一个风靡全球的魔兽地图,他的规则简单与同样流行的地图DotA (Defense of the Ancients) Allst ...

  7. [bzoj1017][JSOI2008]魔兽地图 DotR (Tree DP)【有待优化】

    Description DotR (Defense of the Robots) Allstars是一个风靡全球的魔兽地图,他的规则简单与同样流行的地图DotA (Defense of the Anc ...

  8. BZOJ1017: [JSOI2008]魔兽地图DotR【树形DP】【玄学】

    Description DotR (Defense of the Robots) Allstars是一个风靡全球的魔兽地图,他的规则简单与同样流行的地图DotA (Defense of the Anc ...

  9. [luogu4037 JSOI2008] 魔兽地图 (树形dp)

    传送门 Description DotR (Defense of the Robots) Allstars是一个风靡全球的魔兽地图,他的规则简单与同样流行的地图DotA (Defense of the ...

  10. BZOJ1017: [JSOI2008]魔兽地图DotR

    传送门 设$f[i][j][k]$表示对于第$i$个点,向父节点贡献$j$个已合成的装备,花费了$k$的代价,最多获得的力量值. 单纯的$f[i][j][k]$是很难转移的,主要原因是无法维护和其他儿 ...

随机推荐

  1. CISCN 应用环境相关指令备忘录

    1 - 关于Python环境的 使用Anaconda2管理Python环境 1.1 - 安装 官网下载安装包下载. 1.2 - 创建Python环境 localhost:template mac$ c ...

  2. 2_C语言中的数据类型 (十)数组

    1          字符串与字符数组 1.1       字符数组定义 char array[100]; 1.2       字符数组初始化 char array[100] = {'a', 'b', ...

  3. linux下ipython无法保存历史记录

    在Centos7下使用ipython时,发现有个warning,提示无法保存历史记录 [root@localhost pip-]# ipython /usr/local/lib/python3./si ...

  4. python实现并发爬虫

    在进行单个爬虫抓取的时候,我们不可能按照一次抓取一个url的方式进行网页抓取,这样效率低,也浪费了cpu的资源.目前python上面进行并发抓取的实现方式主要有以下几种:进程,线程,协程.进程不在的讨 ...

  5. JavaScript快速入门-ECMAScript运算符

    1.逻辑运算符 逻辑与:&&(and) 逻辑或:||(or) 逻辑非:!(not) 逻辑 AND 运算符(&&) 逻辑 AND 运算的运算数可以是任何类型的,不止是 B ...

  6. Java中的Calendar日历用法详解

    第一部分 Calendar介绍 public abstract class Calendar implements Serializable, Cloneable, Comparable<Cal ...

  7. Js_cookie保存登录名

    <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"> <html> <head ...

  8. WayOS计费对接(零点计费系统)详细教程

    零点计费系统开发也有两年了,一直都是自己和朋友在使用,今年开始有对外免费开发体验的想法,在此简单介绍一下wayos和零点计费的对接教程. 可到官网www.feidian8.com里面的首页点击查看零点 ...

  9. Nginx+IIS分布式部署和负载均衡

    1.IIS中部署2个网站 创建2个网站,端口分别为9001.9002 2.下载Nginx 可以进入Nginx官网进行下载,官网地址: http://nginx.org/,需要下载windows版的 3 ...

  10. 甲题题解-1116. Come on! Let’s C (20)-(素数筛选法)

    用vis标记出现过的id,checked标记询问过的id.至于如何判断排名为素数,用素数筛选法预处理一下即可,水题. #include <iostream> #include <cs ...