bzoj1485: [HNOI2009]有趣的数列(Catalan数)
一眼卡特兰数...写完才发现不对劲,样例怎么输出$0$...原来模数不一定是质数= =...
第一次见到模数不是质数的求组合数方法$(n,m\leq 10^7)$,记录一下...
先对于$1$~$n$的每个数筛出最小的质因子(我肯定是写埃式筛啦),那么乘上一个数$x$相当于乘上$x$的所有质因子,所以从大到小扫一遍每一个数,若$x$被乘了$1$次且$x$不是质数,那么就给$x$的最小质因子$mn_x$和$\frac{x}{mn_x}$的次数+$1$,显然这样最后只会剩下质因子有记录次数,那么这个次数就是质因子的指数了。
如果求$C(n,m)$,不妨设$n-m\leq m$,那么$m+1$~$n$被乘了$1$次,$1$~$n-m$被除了$1$次,也就是被乘了$-1$次,那么这些数的质因子都应该被减去相应次数。会不会有质因子被减到负数了?我们知道组合数一定是正整数,所以肯定不会出负数啦~
最后扫一遍所有质数,快速幂一下就可以求得组合数了,$n$以内的质数个数是$O(\frac{n}{logn})$级别的,快速幂是$O(logn)$的,所以复杂度是$O(n)$的。
对于这题使用卡特兰数的$C(2n,n)/(n+1)$的公式会比较好一些,不算$n+1$的贡献就好了
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<algorithm>
#define ll long long
using namespace std;
const int maxn=, inf=1e9;
int n, mod, ans;
int p[maxn], mn[maxn], cnt[maxn];
bool v[maxn];
inline void read(int &k)
{
int f=; k=; char c=getchar();
while(c<'' || c>'') c=='-'&&(f=-), c=getchar();
while(c<='' && c>='') k=k*+c-'', c=getchar();
k*=f;
}
inline void getp()
{
for(int i=;i<=n<<;i++)
if(!v[i])
{
p[++p[]]=i;
for(int j=i<<;j<=n<<;j+=i) v[j]=, !mn[j] && (mn[j]=i);
}
}
inline int power(int a, int b)
{
int ans=;
for(;b;b>>=, a=1ll*a*a%mod)
if(b&) ans=1ll*ans*a%mod;
return ans;
}
inline void add(int x, int delta)
{
cnt[x]+=delta;
if(v[x])
{
cnt[mn[x]]+=cnt[x];
cnt[x/mn[x]]+=cnt[x];
cnt[x]=;
}
}
int main()
{
read(n); read(mod); getp(); ans=;
for(int i=n<<;i>n+;i--) add(i, );
for(int i=n;i>;i--) add(i, -);
for(int i=;i<=p[];i++)
ans=1ll*ans*power(p[i], cnt[p[i]])%mod;
printf("%d\n", ans);
}
bzoj1485: [HNOI2009]有趣的数列(Catalan数)的更多相关文章
- bzoj1485: [HNOI2009]有趣的数列(Catalan数)
1485: [HNOI2009]有趣的数列 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 2105 Solved: 1117[Submit][Stat ...
- BZOJ1485: [HNOI2009]有趣的数列(Catalan数,质因数分解求组合数)
题意 挺简洁的. 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满足a1<a3<…<a ...
- BZOJ 1485: [HNOI2009]有趣的数列 [Catalan数 质因子分解]
1485: [HNOI2009]有趣的数列 Description 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所 ...
- BZOJ 1485: [HNOI2009]有趣的数列( catalan数 )
打个表找一下规律可以发现...就是卡特兰数...卡特兰数可以用组合数计算.对于这道题,ans(n) = C(n, 2n) / (n+1) , 分解质因数去算就可以了... -------------- ...
- BZOJ1485:[HNOI2009]有趣的数列(卡特兰数)
Description 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满足a1<a3<…&l ...
- BZOJ1485: [HNOI2009]有趣的数列(卡特兰数+快速幂)
题目链接 传送门 题面 思路 打表可以发现前六项分别为1,2,5,12,42,132,加上\(n=0\)时的1构成了卡特兰数的前几项. 看别人的题解说把每一个数扫一遍,奇数项当成入栈,偶数项当成出栈, ...
- [HNOI2009]有趣的数列 卡特兰数
题面:[HNOI2009]有趣的数列 题解: 观察到题目其实就是要求从长为2n的序列中选n个放在集合a,剩下的放在集合b,使得集合a和集合b中可以一一对应的使a中的元素小于b. 2种想法(实质上是一样 ...
- [bzoj1485][HNOI2009]有趣的数列_卡特兰数_组合数
有趣的数列 bzoj-1485 HNOI-2009 题目大意:求所有1~2n的排列满足奇数项递增,偶数项递增.相邻奇数项大于偶数项的序列个数%P. 注释:$1\le n\le 10^6$,$1\le ...
- 【卡特兰数】BZOJ1485: [HNOI2009]有趣的数列
Description 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满足a1<a3<…&l ...
- [HNOI2009] 有趣的数列——卡特兰数与杨表
[HNOI 2009] 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满足a1<a3<…&l ...
随机推荐
- c# 解析百度图片搜索结果json中objURL图片原始地址
// http://image.baidu.com/search/acjson?tn=resultjson_com&ipn=rj&ct=201326592&fp=result& ...
- 20155327 Exp9 Web安全基础
20155327 Exp9 Web安全基础 基础问题回答 (1)SQL注入攻击原理,如何防御 SQL注入攻击就是通过把SQL命令插入到Web表单递交或输入域名或页面请求的查询字符串,最终达到欺骗服务器 ...
- 20155338 《网络攻防》Exp5 MSF基础应用
20155338 <网络攻防>Exp5 MSF基础应用 基础问题回答 1. 用自己的话解释什么是exploit,payload,encode? exploit将真正要负责攻击的代码传送到靶 ...
- LoRa---官方例程移植
SX1278芯片上移植Semtech官方PING-PONG例程 移植环境:keil5.20 硬件平台:stm32f051+sx1278 1.下载源码:Semtech官网下载最新例程链接:http:// ...
- python 回溯法 记录
一直不是太理解回溯法,这几天集中学习了一下,记录如下. 回溯法有"通用的解题法"之称. 1.定义: 也叫试探法,它是一种系统地搜索问题的解的方法. 2.基本思想: 从一条路往前 ...
- Selenium之前世今生
前世 Selenium RC 早期的Selenium使用的是JavaScript注入技术与浏览器打交道,需要Selenium RC启动一个Server,将操作Web元素的API调用转化为一段段Java ...
- [CF1059E]Split the Tree[贪心+树上倍增]
题意 给定 \(n\) 个节点的树,点有点权 \(w\) ,划分成多条儿子到祖先的链,要求每条链点数不超过 \(L\) ,和不超过 \(S\),求最少划分成几条链. \(n\leq 10^5\) . ...
- JavaScript快速入门-ECMAScript语句
JavaScript语句(if.for.for in.do...while.while.break.continue.switch) 一.if语句 if (condition) statement1 ...
- 回溯-uva129
题目链接:https://vjudge.net/problem/UVA-129 题解: 这道题卡了一会儿的时间,一开始最大的问题是如何判断添加了一个字符之后,该字符串是不是一个困难的串,解决办法是:利 ...
- Vigenere加密
Vigenere加密法原理很简单,实现起来也不难.与普通的单码加密法不同,明文经过加密之后,每个字母出现的频率就不会有高峰和低峰. 密钥中字母代表行和明文中的字母代表行.在vigenere表中找到对应 ...