【Luogu4609】建筑师(组合数学)

题面

洛谷

题解

首先发现整个数组一定被最高值切成左右两半,因此除去最高值之后在左右分开考虑。

考虑一个暴力\(dp\) ,设\(f[i][j]\)表示用了\(i\)个数并且能够看到\(j\)个的方案数,强制最大值在最右侧。

每次添加最小的一个数放进来:\(f[i][j]=f[i-1][j-1]+f[i-1][j]*(i-2)\)

如果把它放在最前面,答案加一,也就是\(f[i-1][j-1]\)转移过来,

否则的话,因为最大值强制放在最后面,所以还剩下\(i-2\)个位置,所以就像上面这样转移。

那么,答案就是:

我们枚举最高的位置,然后两边分开考虑,

那么就是:

\[\sum_{i=1}^n f[i][A]*f[n-i+1][B]*C_{n-1}^{i-1}
\]

这样子复杂度是\(O(100*10^5+Tn)\),可以拿到\(40pts\)

代码:

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define ll long long
#define MOD 1000000007
#define MAX 50050
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int f[MAX][101];
int jc[MAX],jv[MAX],inv[MAX];
int C(int n,int m){return 1ll*jc[n]*jv[m]%MOD*jv[n-m]%MOD;}
int main()
{
f[0][0]=jc[0]=jv[0]=inv[0]=inv[1]=1;
for(int i=1;i<=50000;++i)
for(int j=1;j<=100;++j)
f[i][j]=(f[i-1][j-1]+1ll*f[i-1][j]*(i-2))%MOD;
for(int i=1;i<MAX;++i)jc[i]=1ll*jc[i-1]*i%MOD;
for(int i=2;i<MAX;++i)inv[i]=1ll*inv[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=1;i<MAX;++i)jv[i]=1ll*jv[i-1]*inv[i]%MOD;
int T=read();
while(T--)
{
int n=read(),A=read(),B=read(),ans=0;
for(int i=1;i<=n;++i)
ans=(ans+1ll*f[i][A]*f[n-i+1][B]%MOD*C(n-1,i-1)%MOD)%MOD;
printf("%d\n",ans);
}
return 0;
}

然而这样不够优秀,我们继续颓柿子。

还是一样的,从左往右看和从右往左看是一样的。

所以还是只需要考虑一半,从最高的位置分成左右来看。

如果恰好只能够看见了A个建筑的话,我们可以把所有可以看到的建筑以及被它遮住的所有建筑分组,那么,我们可以把这个顺序认为是一个环,那么每一个能够被看见的建筑一定是这个环中的所有建筑中最高的那个,换而言之,一个环就能确定一部分建筑的顺序,使得它们恰好能够被看到一个,那么一个环排列就可以确定着一种方法。

因为现在左边恰好看见\(A\)个,右边恰好看见\(B\)个,所以等价于除了最高位置之外,一共还需要\(A+B-2\)个环,而总共有\(n-1\)个建筑可以用来环排列,而左边还需要看见\(A-1\)个建筑,所以等价于还需要选出\(A-1\)个环,因此总方案数就是\(C_{A+B-2}^{A-1}*S_{n}^{A+B-2}\)

其中\(S\)是第一类斯特林数。

#include<cstdio>
#define MOD 1000000007
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while(ch<'0'||ch>'9')ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int n,A,B,ans;
int S[50050][202],C[202][202];
int main()
{
S[0][0]=C[0][0]=C[1][0]=1;
for(int i=1;i<=200;C[++i][0]=1)
for(int j=1;j<=i;++j)C[i][j]=(C[i-1][j]+C[i-1][j-1])%MOD;
for(int i=1;i<=50000;++i)
for(int j=1;j<=i&&j<=200;++j)
S[i][j]=(1ll*S[i-1][j]*(i-1)+S[i-1][j-1])%MOD;
int T=read();
while(T--)
{
n=read(),A=read(),B=read();
printf("%lld\n",1ll*S[n-1][A+B-2]*C[A+B-2][A-1]%MOD);
}
return 0;
}

【Luogu4609】建筑师(第一类斯特林数,组合数学)的更多相关文章

  1. LUOGU P4609 [FJOI2016]建筑师(第一类斯特林数)

    传送门 解题思路 好神仙的思路,首先一种排列中按照最高点将左右分开,那么就是要在左边选出\(a-1\)个,右边选出\(b-1\)一个,这个如何计算呢?考虑第一类斯特林数,第一类斯特林数是将\(n\)个 ...

  2. Luogu4609 FJOI2016 建筑师 第一类斯特林数

    题目传送门 题意:给出$N$个高度从$1$到$N$的建筑,问有多少种从左往右摆放这些建筑的方法,使得从左往右看能看到$A$个建筑,从右往左看能看到$B$个建筑.$N \leq 5 \times 10^ ...

  3. 【组合数学:第一类斯特林数】【HDU3625】Examining the Rooms

    Examining the Rooms Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

  4. Luogu4609 FJOI2016建筑师(斯特林数)

    显然排列中的最大值会将排列分成所能看到的建筑不相关的两部分.对于某一边,将所能看到的建筑和其遮挡的建筑看成一个集合.显然这个集合内最高的要排在第一个,而剩下的建筑可以随便排列,这相当于一个圆排列.同时 ...

  5. 洛谷P4609 [FJOI2016]建筑师 【第一类斯特林数】

    题目链接 洛谷P4609 题解 感性理解一下: 一神带\(n\)坑 所以我们只需将除了\(n\)外的\(n - 1\)个元素分成\(A + B - 2\)个集合,每个集合选出最大的在一端,剩余进行排列 ...

  6. 洛谷P4609 [FJOI2016]建筑师(第一类斯特林数+组合数)

    题面 洛谷 题解 (图片来源于网络,侵删) 以最高的柱子\(n\)为分界线,我们将左边的一个柱子和它右边的省略号看作一个圆排列,右边的一个柱子和它左边的省略号看作一个圆排列,于是,除了中间的最高的柱子 ...

  7. P4609 [FJOI2016]建筑师(第一类斯特林数)

    传送门 没想到连黑题都会有双倍经验的 其实这题本质上是和CF960G Bandit Blues一样的,不过那里是要用分治FFT预处理第一类斯特林数,这里直接打表预处理第一类斯特林数就可以了 //min ...

  8. CF960G Bandit Blues 第一类斯特林数、NTT、分治/倍增

    传送门 弱化版:FJOI2016 建筑师 由上面一题得到我们需要求的是\(\begin{bmatrix} N - 1 \\ A + B - 2 \end{bmatrix} \times \binom ...

  9. 【CF960G】Bandit Blues(第一类斯特林数,FFT)

    [CF960G]Bandit Blues(第一类斯特林数,FFT) 题面 洛谷 CF 求前缀最大值有\(a\)个,后缀最大值有\(b\)个的长度为\(n\)的排列个数. 题解 完完全全就是[FJOI] ...

随机推荐

  1. React Native创建一个APP

    React Native 结合了 Web 应用和 Native 应用的优势,可以使用 JavaScript 来开发 iOS 和 Android 原生应用.在 JavaScript 中用 React 抽 ...

  2. Vue 项目集合

    饿了么安全应急响应中心 饿了么招聘 饿了么前端 · GitHub 稀土掘金 异乡好居 明星垂搜 广州建管 基于Vue.js的数据统计系统(一) 基于Vue.js的数据统计系统(二) 基于Vue.js的 ...

  3. mfc 嵌套类

    嵌套类 一. 嵌套类 嵌套类的定义 将某个类的定义放在另一个类的内部,这样的类定义,叫嵌套类. class AAA { int aaa; class BBB { int bbb; //其它成员或者函数 ...

  4. HDU-6356 Glad You Came (线段树)

    题目链接:Glad You Came 题意:数组有n个数初始为0,m个询问,每个询问给出L R V(按照给定函数生成),将数组的下标L到R的数与V取较大值,最后输出给定的公式结果. 题意:哇~打比赛的 ...

  5. jqGrid 奇淫巧技

    1.新建maven-web项目 结构如图 #GLOBAL_DIGITALMEDIA_SEARCH_grid-table > tbody > tr >td:last-child{ te ...

  6. Azure 基础:Queue Storage

    Azure Storage 是微软 Azure 云提供的云端存储解决方案,当前支持的存储类型有 Blob.Queue.File 和 Table. 笔者在前文中介绍了 File Storage 的基本用 ...

  7. linux centos 中Tomcat的安装和自启动配置

    Tomcat的安装和自启动配置将tomcat添加为linux系统服务,网上找到了很多方法,其中比较简单的如下:方法一:(亲测有效)1. 首先需要将$Tomcat_HOME/bin目录下的catalin ...

  8. 0.1 Maven相关知识(项目开发基础)

    一.Maven 1.1Maven是什么 Maven项目对象模型(POM),可以通过一小段描述信息来管理项目的构建,报告和文档的项目管理工具软件. Maven这个单词来自于意第绪语(犹太语),意为知识的 ...

  9. 《Pro SQL Server Internals, 2nd edition》的CHAPTER 2 Tables and Indexes中的Clustered Indexes一节(翻译)

    <Pro SQL Server Internals> 作者: Dmitri Korotkevitch 出版社: Apress出版年: 2016-12-29页数: 804定价: USD 59 ...

  10. LeetCode 617. Merge Two Binary Trees合并二叉树 (C++)

    题目: Given two binary trees and imagine that when you put one of them to cover the other, some nodes ...