Description

我们害怕把这道题题面搞得太无聊了,所以我们决定让这题超短。一个序列被称为是不无聊的,仅当它的每个连续子序列存在一个独一无二的数字,即每个子序列里至少存在一个数字只出现一次。给定一个整数序列,请你判断它是不是不无聊的。

Input

第一行一个正整数T,表示有T组数据。每组数据第一行一个正整数n,表示序列的长度,1 <= n <= 200000。接下来一行n个不超过10^9的非负整数,表示这个序列。

Output

对于每组数据输出一行,输出"non-boring"表示这个序列不无聊,输出"boring"表示这个序列无聊。

Sample Input

4

5

1 2 3 4 5

5

1 1 1 1 1

5

1 2 3 2 1

5

1 1 2 1 1

Sample Output

non-boring

boring

non-boring

boring

Solution

考虑分治

处理出每个位置的数的上一次出现位置与下一次出现位置,一段区间 \(l,r\) ,如果其中 \(x\) 位置上的数满足 \(pre[x]<l\) 并且 \(nxt[x]>r\) ,那么说明 \(l,r\) 这段区间内的所有子区间只要跨过了 \(x\) 位置,那么就满足要求,所以就继续分成两端区间 \([l,x)\) 与 \((x,r]\) 进行判断

朴素的,是一个一个枚举 \(x\) ,但这样复杂度是错误的,因为这样的分治,并不均匀,不能保证最后是 \(log\) 层

但是考虑变换枚举方法,双向枚举,从两边往中间枚举,这样复杂度就对了。置于为什么,可以将这个分治的过程倒过来当成合并来思考,即每次合并两个区间的复杂度是小的那段区间的长度,这不就是启发式合并吗?所以复杂度正确

代码并不难,主要难在分治以及复杂度分析

#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=200000+10;
int T,n,a[MAXN],pre[MAXN],nxt[MAXN];
std::map<int,int> M;
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline bool solve(int l,int r)
{
if(r<=l)return true;
int p=l,q=r;
for(register int p=l,q=r;p<=q;++p,--q)
if(pre[p]<l&&nxt[p]>r)return solve(l,p-1)&&solve(p+1,r);
else if(p!=q&&pre[q]<l&&nxt[q]>r)return solve(l,q-1)&&solve(q+1,r);
return false;
}
int main()
{
read(T);
while(T--)
{
int n;read(n);
for(register int i=1;i<=n;++i)read(a[i]);
M.clear();
for(register int i=1;i<=n;++i)pre[i]=M[a[i]],M[a[i]]=i;
M.clear();
for(register int i=n;i>=1;--i)nxt[i]=M[a[i]]?M[a[i]]:n+1,M[a[i]]=i;
if(!solve(1,n))puts("boring");
else puts("non-boring");
}
return 0;
}

【刷题】BZOJ 4059 [Cerc2012]Non-boring sequences的更多相关文章

  1. BZOJ 4059: [Cerc2012]Non-boring sequences ( )

    要快速在一段子序列中判断一个元素是否只出现一次 , 我们可以预处理出每个元素左边和右边最近的相同元素的位置 , 这样就可以 O( 1 ) 判断. 考虑一段序列 [ l , r ] , 假如我们找到了序 ...

  2. BZOJ 4059 [Cerc2012]Non-boring sequences(启发式分治)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4059 [题目大意] 一个序列被称为是不无聊的,仅当它的每个连续子序列存在一个独一无二的 ...

  3. BZOJ 4059: [Cerc2012]Non-boring sequences(启发式分治)

    传送门 解题思路 首先可以想到要预处理一个\(nxt_i\)和\(pre_i\),表示前后与当前位置权值相同的节点,那么这样可以迅速算出某个点在某段区间是否出现多次.然后这样的话就考虑分治,对于\([ ...

  4. 【刷题】BZOJ 2407 探险

    Description 探险家小T好高兴!X国要举办一次溶洞探险比赛,获奖者将得到丰厚奖品哦!小T虽然对奖品不感兴趣,但是这个大振名声的机会当然不能错过! 比赛即将开始,工作人员说明了这次比赛的规则: ...

  5. 【刷题】BZOJ 4543 [POI2014]Hotel加强版

    Description 同OJ3522 数据范围:n<=100000 Solution dp的设计见[刷题]BZOJ 3522 [Poi2014]Hotel 然后发现dp的第二维与深度有关,于是 ...

  6. 【刷题】BZOJ 4316 小C的独立集

    Description 图论小王子小C经常虐菜,特别是在图论方面,经常把小D虐得很惨很惨. 这不,小C让小D去求一个无向图的最大独立集,通俗地讲就是:在无向图中选出若干个点,这些点互相没有边连接,并使 ...

  7. 【刷题】BZOJ 4176 Lucas的数论

    Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目"求Sigma(f(i)),其中1<=i< ...

  8. BZOJ第一页刷题计划

    BZOJ第一页刷题计划 已完成:67 / 90 [BZOJ1000]A+B Problem:A+B: [BZOJ1001][BeiJing2006]狼抓兔子:最小割: [BZOJ1002][FJOI2 ...

  9. 【刷题】BZOJ 2260 商店购物

    Description Grant是一个个体户老板,他经营的小店因为其丰富的优惠方案深受附近居民的青睐,生意红火.小店的优惠方案十分简单有趣.Grant规定:在一次消费过程中,如果您在本店购买了精制油 ...

随机推荐

  1. EF Core中如何取消跟踪DbContext中所有被跟踪的实体

    首先定义一个DbContext的扩展类DbContextDetachAllExtension,其中包含一个DbContext的扩展方法DetachAll,用来取消跟踪DbContext中所有被跟踪的实 ...

  2. python_环境的配置

    1.首先登入官网:https://www.python.org/downloads/windows/ 下载: 下载executable installer 2.安装 ipython,jupyter 地 ...

  3. Ubuntu学习总结-01 安装Ubuntu

    Ubuntu(友帮拓.优般图.乌班图)是一个以桌面应用为主的开源GNU/Linux操作系统,Ubuntu 是基于Debian GNU/Linux,支持x86.amd64(即x64)和ppc架构,由全球 ...

  4. 2017-2018-2 20155203《网络对抗技术》Exp9 :Web安全基础

    实践过程记录 - SQL Injection(Webgoat 8.0&Webgoat7.0) 1. SQL Injection(Webgoat 8.0). 这一部分很基础,是简单的sql注入, ...

  5. 《FPGA设计技巧与案例开发详解-第二版》全套资料包

    本人参与写的一本书(TimeQuest一章由我所写),希望大家多多支持: 全书配套资料上传各大网盘资料中附送大量源码,你值得拥有--<FPGA设计技巧与案例开发详解-第二版>全套资料包-V ...

  6. mfc c++字符串类与 流输出

    一.命名空间 所谓命名空间(namespace),是指标识符的各种可见范围.C++标准程序库中的所有标识符都被定义于一个名为std的命名空间(namespace)中.而我们要使用的string类也是一 ...

  7. 微信小程序 Echarts 异步数据更新

    微信小程序 Echarts 异步数据更新的练习,被坑了很多次,特作记录. 作者:罗兵 地址:https://www.cnblogs.com/hhh5460/p/9989805.html 0.效果图   ...

  8. python 回溯法 子集树模板 系列 —— 19、野人与传教士问题

    问题 在河的左岸有N个传教士.N个野人和一条船,传教士们想用这条船把所有人都运过河去,但有以下条件限制: (1)修道士和野人都会划船,但船每次最多只能运M个人: (2)在任何岸边以及船上,野人数目都不 ...

  9. 初识TPOT:一个基于Python的自动化机器学习开发工具

    1. TPOT介绍 一般来讲,创建一个机器学习模型需要经历以下几步: 数据预处理 特征工程 模型选择 超参数调整 模型保存 本文介绍一个基于遗传算法的快速模型选择及调参的方法,TPOT:一种基于Pyt ...

  10. MySQL清理慢查询日志slow_log的方法

    一.清除原因 因为之前打开了慢查询,导致此表越来越大达到47G,导致磁盘快被占满,使用xtrabackup进行备份的时候文件也超大. mysql> show variables like 'lo ...