【刷题】BZOJ 4059 [Cerc2012]Non-boring sequences
Description
我们害怕把这道题题面搞得太无聊了,所以我们决定让这题超短。一个序列被称为是不无聊的,仅当它的每个连续子序列存在一个独一无二的数字,即每个子序列里至少存在一个数字只出现一次。给定一个整数序列,请你判断它是不是不无聊的。
Input
第一行一个正整数T,表示有T组数据。每组数据第一行一个正整数n,表示序列的长度,1 <= n <= 200000。接下来一行n个不超过10^9的非负整数,表示这个序列。
Output
对于每组数据输出一行,输出"non-boring"表示这个序列不无聊,输出"boring"表示这个序列无聊。
Sample Input
4
5
1 2 3 4 5
5
1 1 1 1 1
5
1 2 3 2 1
5
1 1 2 1 1
Sample Output
non-boring
boring
non-boring
boring
Solution
考虑分治
处理出每个位置的数的上一次出现位置与下一次出现位置,一段区间 \(l,r\) ,如果其中 \(x\) 位置上的数满足 \(pre[x]<l\) 并且 \(nxt[x]>r\) ,那么说明 \(l,r\) 这段区间内的所有子区间只要跨过了 \(x\) 位置,那么就满足要求,所以就继续分成两端区间 \([l,x)\) 与 \((x,r]\) 进行判断
朴素的,是一个一个枚举 \(x\) ,但这样复杂度是错误的,因为这样的分治,并不均匀,不能保证最后是 \(log\) 层
但是考虑变换枚举方法,双向枚举,从两边往中间枚举,这样复杂度就对了。置于为什么,可以将这个分治的过程倒过来当成合并来思考,即每次合并两个区间的复杂度是小的那段区间的长度,这不就是启发式合并吗?所以复杂度正确
代码并不难,主要难在分治以及复杂度分析
#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=200000+10;
int T,n,a[MAXN],pre[MAXN],nxt[MAXN];
std::map<int,int> M;
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline bool solve(int l,int r)
{
if(r<=l)return true;
int p=l,q=r;
for(register int p=l,q=r;p<=q;++p,--q)
if(pre[p]<l&&nxt[p]>r)return solve(l,p-1)&&solve(p+1,r);
else if(p!=q&&pre[q]<l&&nxt[q]>r)return solve(l,q-1)&&solve(q+1,r);
return false;
}
int main()
{
read(T);
while(T--)
{
int n;read(n);
for(register int i=1;i<=n;++i)read(a[i]);
M.clear();
for(register int i=1;i<=n;++i)pre[i]=M[a[i]],M[a[i]]=i;
M.clear();
for(register int i=n;i>=1;--i)nxt[i]=M[a[i]]?M[a[i]]:n+1,M[a[i]]=i;
if(!solve(1,n))puts("boring");
else puts("non-boring");
}
return 0;
}
【刷题】BZOJ 4059 [Cerc2012]Non-boring sequences的更多相关文章
- BZOJ 4059: [Cerc2012]Non-boring sequences ( )
要快速在一段子序列中判断一个元素是否只出现一次 , 我们可以预处理出每个元素左边和右边最近的相同元素的位置 , 这样就可以 O( 1 ) 判断. 考虑一段序列 [ l , r ] , 假如我们找到了序 ...
- BZOJ 4059 [Cerc2012]Non-boring sequences(启发式分治)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4059 [题目大意] 一个序列被称为是不无聊的,仅当它的每个连续子序列存在一个独一无二的 ...
- BZOJ 4059: [Cerc2012]Non-boring sequences(启发式分治)
传送门 解题思路 首先可以想到要预处理一个\(nxt_i\)和\(pre_i\),表示前后与当前位置权值相同的节点,那么这样可以迅速算出某个点在某段区间是否出现多次.然后这样的话就考虑分治,对于\([ ...
- 【刷题】BZOJ 2407 探险
Description 探险家小T好高兴!X国要举办一次溶洞探险比赛,获奖者将得到丰厚奖品哦!小T虽然对奖品不感兴趣,但是这个大振名声的机会当然不能错过! 比赛即将开始,工作人员说明了这次比赛的规则: ...
- 【刷题】BZOJ 4543 [POI2014]Hotel加强版
Description 同OJ3522 数据范围:n<=100000 Solution dp的设计见[刷题]BZOJ 3522 [Poi2014]Hotel 然后发现dp的第二维与深度有关,于是 ...
- 【刷题】BZOJ 4316 小C的独立集
Description 图论小王子小C经常虐菜,特别是在图论方面,经常把小D虐得很惨很惨. 这不,小C让小D去求一个无向图的最大独立集,通俗地讲就是:在无向图中选出若干个点,这些点互相没有边连接,并使 ...
- 【刷题】BZOJ 4176 Lucas的数论
Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目"求Sigma(f(i)),其中1<=i< ...
- BZOJ第一页刷题计划
BZOJ第一页刷题计划 已完成:67 / 90 [BZOJ1000]A+B Problem:A+B: [BZOJ1001][BeiJing2006]狼抓兔子:最小割: [BZOJ1002][FJOI2 ...
- 【刷题】BZOJ 2260 商店购物
Description Grant是一个个体户老板,他经营的小店因为其丰富的优惠方案深受附近居民的青睐,生意红火.小店的优惠方案十分简单有趣.Grant规定:在一次消费过程中,如果您在本店购买了精制油 ...
随机推荐
- HBase启动报错:ERROR: org.apache.hadoop.hbase.ipc.ServerNotRunningYetException: Server is not running yet
今天进入hbase shell中输入命令报错:ERROR: org.apache.hadoop.hbase.ipc.ServerNotRunningYetException: Server is no ...
- 在 R 中估计 GARCH 参数存在的问题(续)
目录 在 R 中估计 GARCH 参数存在的问题(续) rugarch 包的使用 简单实验 rugarch 参数估计的行为 极端大样本 结论 在 R 中估计 GARCH 参数存在的问题(续) 本文承接 ...
- VB CompactDatabase 压缩/修复数据库
Option Explicit Private Sub Command1_Click() On Error GoTo err Dim DbEngine, dbFile As String dbFile ...
- 2017-2018-2 20155230《网络对抗技术》实验8:Web基础
实践过程记录 1.Web前端HTML 首先用指令sudo apt-get install apache2下载apache,由于实验机已经安装好Apache,这里就不演示了,对于Apache使用的端口我 ...
- GATT scan的流程
BLE scan 在bluedroid的实现中,有两个接口:一个是discovery,一个是ble observe,这两者有什么区别呢? 这里追了一下代码发现,inquiry 是上层调用search ...
- 解决:Linux SSH Secure Shell(ssh) 超时断开的解决方法
转载:http://www.cnblogs.com/jifeng/archive/2011/06/25/2090118.html 修改/etc/ssh/sshd_config文件,找到 ClientA ...
- Js_数组操作
用 js有很久了,但都没有深究过js的数组形式.偶尔用用也就是简单的string.split(char).这段时间做的一个项目,用到数组的地方很多,自以为js高手的自己居然无从下手,一下狠心,我学!呵 ...
- DevOps on AWS之Cloudformation概念介绍篇
Cloudformation的相关概念 AWS cloudformation是一项典型的(IAC)基础架构即代码服务..通过编写模板对亚马逊云服务的资源进行调用和编排.借助cloudformation ...
- k8s之使用secret获取私有仓库镜像
一.前言 其实这次实践算不上特别复杂,只是在实践过程中遇到了一些坑,以及填坑的方法是非常值得在以后的学习过程中参考借鉴的 二.知识准备 1.harbor是一个企业级的镜像仓库,它比起docker re ...
- java数据结构之hashMap
初学JAVA的时候,就记得有句话两个对象的hashCode相同,不一定equal,但是两个对象equal,hashCode一定相同,当时一直不理解是什么意思,最近在极客时间上学习了课程<数据结构 ...