Description

我们害怕把这道题题面搞得太无聊了,所以我们决定让这题超短。一个序列被称为是不无聊的,仅当它的每个连续子序列存在一个独一无二的数字,即每个子序列里至少存在一个数字只出现一次。给定一个整数序列,请你判断它是不是不无聊的。

Input

第一行一个正整数T,表示有T组数据。每组数据第一行一个正整数n,表示序列的长度,1 <= n <= 200000。接下来一行n个不超过10^9的非负整数,表示这个序列。

Output

对于每组数据输出一行,输出"non-boring"表示这个序列不无聊,输出"boring"表示这个序列无聊。

Sample Input

4

5

1 2 3 4 5

5

1 1 1 1 1

5

1 2 3 2 1

5

1 1 2 1 1

Sample Output

non-boring

boring

non-boring

boring

Solution

考虑分治

处理出每个位置的数的上一次出现位置与下一次出现位置,一段区间 \(l,r\) ,如果其中 \(x\) 位置上的数满足 \(pre[x]<l\) 并且 \(nxt[x]>r\) ,那么说明 \(l,r\) 这段区间内的所有子区间只要跨过了 \(x\) 位置,那么就满足要求,所以就继续分成两端区间 \([l,x)\) 与 \((x,r]\) 进行判断

朴素的,是一个一个枚举 \(x\) ,但这样复杂度是错误的,因为这样的分治,并不均匀,不能保证最后是 \(log\) 层

但是考虑变换枚举方法,双向枚举,从两边往中间枚举,这样复杂度就对了。置于为什么,可以将这个分治的过程倒过来当成合并来思考,即每次合并两个区间的复杂度是小的那段区间的长度,这不就是启发式合并吗?所以复杂度正确

代码并不难,主要难在分治以及复杂度分析

#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=200000+10;
int T,n,a[MAXN],pre[MAXN],nxt[MAXN];
std::map<int,int> M;
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline bool solve(int l,int r)
{
if(r<=l)return true;
int p=l,q=r;
for(register int p=l,q=r;p<=q;++p,--q)
if(pre[p]<l&&nxt[p]>r)return solve(l,p-1)&&solve(p+1,r);
else if(p!=q&&pre[q]<l&&nxt[q]>r)return solve(l,q-1)&&solve(q+1,r);
return false;
}
int main()
{
read(T);
while(T--)
{
int n;read(n);
for(register int i=1;i<=n;++i)read(a[i]);
M.clear();
for(register int i=1;i<=n;++i)pre[i]=M[a[i]],M[a[i]]=i;
M.clear();
for(register int i=n;i>=1;--i)nxt[i]=M[a[i]]?M[a[i]]:n+1,M[a[i]]=i;
if(!solve(1,n))puts("boring");
else puts("non-boring");
}
return 0;
}

【刷题】BZOJ 4059 [Cerc2012]Non-boring sequences的更多相关文章

  1. BZOJ 4059: [Cerc2012]Non-boring sequences ( )

    要快速在一段子序列中判断一个元素是否只出现一次 , 我们可以预处理出每个元素左边和右边最近的相同元素的位置 , 这样就可以 O( 1 ) 判断. 考虑一段序列 [ l , r ] , 假如我们找到了序 ...

  2. BZOJ 4059 [Cerc2012]Non-boring sequences(启发式分治)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4059 [题目大意] 一个序列被称为是不无聊的,仅当它的每个连续子序列存在一个独一无二的 ...

  3. BZOJ 4059: [Cerc2012]Non-boring sequences(启发式分治)

    传送门 解题思路 首先可以想到要预处理一个\(nxt_i\)和\(pre_i\),表示前后与当前位置权值相同的节点,那么这样可以迅速算出某个点在某段区间是否出现多次.然后这样的话就考虑分治,对于\([ ...

  4. 【刷题】BZOJ 2407 探险

    Description 探险家小T好高兴!X国要举办一次溶洞探险比赛,获奖者将得到丰厚奖品哦!小T虽然对奖品不感兴趣,但是这个大振名声的机会当然不能错过! 比赛即将开始,工作人员说明了这次比赛的规则: ...

  5. 【刷题】BZOJ 4543 [POI2014]Hotel加强版

    Description 同OJ3522 数据范围:n<=100000 Solution dp的设计见[刷题]BZOJ 3522 [Poi2014]Hotel 然后发现dp的第二维与深度有关,于是 ...

  6. 【刷题】BZOJ 4316 小C的独立集

    Description 图论小王子小C经常虐菜,特别是在图论方面,经常把小D虐得很惨很惨. 这不,小C让小D去求一个无向图的最大独立集,通俗地讲就是:在无向图中选出若干个点,这些点互相没有边连接,并使 ...

  7. 【刷题】BZOJ 4176 Lucas的数论

    Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目"求Sigma(f(i)),其中1<=i< ...

  8. BZOJ第一页刷题计划

    BZOJ第一页刷题计划 已完成:67 / 90 [BZOJ1000]A+B Problem:A+B: [BZOJ1001][BeiJing2006]狼抓兔子:最小割: [BZOJ1002][FJOI2 ...

  9. 【刷题】BZOJ 2260 商店购物

    Description Grant是一个个体户老板,他经营的小店因为其丰富的优惠方案深受附近居民的青睐,生意红火.小店的优惠方案十分简单有趣.Grant规定:在一次消费过程中,如果您在本店购买了精制油 ...

随机推荐

  1. NLB网路负载均衡管理器详解(转载)

    序言 在上一篇配置iis负载均衡中我们使用啦微软的ARR,我在那篇文章也中提到了网站的高可用性,但是ARR只能做请求入口的消息分发服务,这样如果我们的消息分发服务器给down掉啦,那么做再多的应用服务 ...

  2. Codeforces Round #503 Div1+Div2 1019&1020

    https://winniechen.cn/?p=188 这个还是直接放链接吧,毕竟内容比较多...

  3. Delphi DBGrid类控件定位到某一行,并更改为选中状态。

    Delphi中,可以使用数据集控件提供的 Locate 成员方法快速定位至某条记录, 然后通过清除数据集控件的选中状态,并重新赋值达到我们的目的. grDirectory.DataSource.Dat ...

  4. go语言之行--基础部分

    一.数据类型 布尔型 布尔类型 - 由两个预定义常量组成:true.false,默认值为false package main import "fmt" func main() { ...

  5. 20155328 《网络对抗》 实验八:Web基础

    20155328 <网络对抗> 实验八:Web基础 实验内容及过程记录 一.Web前端HTML 我们的kali是默认安装好了apache的.首先输入netstat -tupln |grep ...

  6. [Oracle]查看数据是否被移入 DataBuffer 的方法

    查看数据是否被移入 DataBuffer 的方法: 例如:表名为 tabxxx, 用户为U2: SQL> grant dba to u2 identified by u2;SQL> con ...

  7. switch语句的执行过程

    switch语句的执行规则如下: 1.从第一个case开始判断,不匹配则跳到下一个case继续判断: 2.遇到break则跳出switch语句: 3.default一般是没有匹配项才执行的,一般是放在 ...

  8. 分享一下个人学PS的过程

    得知Photoshop这款软件是在上大学的时候,2010年.学校学生会的科技部纳新,要求新人会PPT.word.Excel和Photoshop.当时有一个Photoshop大神,成为了学生会科技部的主 ...

  9. 《Effective Java》 学习笔记 —— 并发

    <Effective Java>第二版学习笔记之并发编程. 第66条 同步访问共享的可变数据 * 关键字synchronized可以保证在同一时刻只有一个线程可以执行某个方法或代码块. * ...

  10. Python_汇总生成统计报表

    import xlrd import xlwt from xlutils.copy import copy objWb = xlrd.open_workbook(r'C:\Users\IBM\Desk ...