MT【125】四点共圆
(2017湖南省高中数学竞赛16题)
\(AB\)是椭圆\(mx^2+ny^2=1(m>0,n>0,m\ne n)\)的斜率为 1 的弦.\(AB\)的垂直平分线与椭圆交于两点\(CD\)
(1)求证:\(|CD|^2-|AB|^2=4|EF|^2\) 其中\(E,F\)为\(AB,CD\) 的中点.
(2)证明:\(A,B,C,D\) 四点共圆.
证明第(2)问: 设\(AB,CD\)的交点\(P(x_0,y_0)\),过点\(P\)的直线方程为
\[\begin{equation*}
\left\{ \begin{aligned}
x &= x_0+t \\
y&=y_0+kt
\end{aligned} \right.
\end{equation*}\]
与椭圆联立可得 \(m(x_0+t)^2+n(y_0+kt)^2=1\);
整理得 \((m+nk^2)t^2+2(mx_0+ny_0k)t+mx_0^2+ny_0^2-1=0\)
得到\(t_1t_2=\dfrac{mx_0^2+ny_0^2-1}{m+nk^2} ( \textbf{为定值})\) (由题意这里 \(k=\pm 1\))
故由相交线定理可得\(A,B,C,D\)四点共圆.
事实上,由上面的证明过程我们可以得到更一般的结论:非圆二次曲线,如果对称轴在 \(x\) 轴或者\(y\)轴上(相当于没有xy交叉项).对应的\(AC\)与\(BD\)直线如果斜率互为相反数(保证了\(k^2\)相等),则四点共圆.
MT【125】四点共圆的更多相关文章
- MT【210】四点共圆+角平分线
(2018全国联赛解答最后一题)在平面直角坐标系$xOy$中,设$AB$是抛物线$y^2=4x$的过点$F(1,0)$的弦,$\Delta{AOB}$的外接圆交抛物线于点$P$(不同于点$A,O,B$ ...
- MT【306】圆与椭圆公切线段
已知椭圆方程$\dfrac{x^2}{4}+\dfrac{y^2}{3}=1$,圆方程$x^2+y^2=r^2,(3<r^2<4)$,若直线$l$与椭圆和圆分别切于点$P,Q$求$|PQ| ...
- Pick定理、欧拉公式和圆的反演
Pick定理.欧拉公式和圆的反演 Tags:高级算法 Pick定理 内容 定点都是整点的多边形,内部整点数为\(innod\),边界整点数\(ednod\),\(S=innod+\frac{ednod ...
- hihoCoder挑战赛14 A,B,C题解
转载请注明出处: http://www.cnblogs.com/fraud/ ——by fraud 题目1 : 不等式 时间限制:10000ms 单点时限:1000ms 内存限制:2 ...
- poj1981 Circle and Points 单位圆覆盖问题
转载请注明出处: http://www.cnblogs.com/fraud/ ——by fraud Circle and Points Time Limit: 5000MS Me ...
- poj2187 Beauty Contest(旋转卡壳)
转载请注明出处: http://www.cnblogs.com/fraud/ ——by fraud Beauty Contest Time Limit: 3000MS Memor ...
- poj1127 Jack Straws(线段相交+并查集)
转载请注明出处: http://www.cnblogs.com/fraud/ ——by fraud Jack Straws Time Limit: 1000MS Memory L ...
- [ZJOI2018]保镖
[ZJOI2018]保镖 Tags:题解 题意 链接 初始在平面上有一些点,九条可怜随机出现在一个矩形内的任意一点.若九条可怜出现在\(O\)点,则平面上所有的点都从\(P_i\)移动到\(P'_i\ ...
- 洛谷P4502 [ZJOI2018]保镖(计算几何+三维凸包)
题面 传送门 题解 我对计蒜几盒一无所知 顺便\(xzy\)巨巨好强 前置芝士 三维凸包 啥?你不会三维凸包?快去把板子写了->这里 欧拉公式 \[V-E+F=2\] \(V:vertex\)顶 ...
随机推荐
- windows linux hosts文件的配置,开发项目中域名跳转等。
我们通常都知道Windows中hosts文件(C:\Windows\System32\drivers\etc),用来映射域名的.linux上当然也有,一般在/etc/hosts下. 当工作的项目,在开 ...
- *p++,*++p,*(p++),*(++p)
直接上代码: #include <stdio.h> #include <stdlib.h> int main () { ,,,}; ; int *p, *tmp; p = &a ...
- TensorFlow入门
Win10下pycharm安装tensorflow: 1.安装git,这样就会有windows powerShell 2.安装python3.x,配置环境变量 3.安装pip,下载地址是:https: ...
- [Jxoi2012]奇怪的道路 BZOJ3195 状压DP
分析: k很小,可以状压. f[S][i]表示状态S表示在i之前k+1个中点的边数奇偶情况 之后转移的时候,S的最后一位不能为1 附上代码: #include <cstdio> #incl ...
- struts2_E_commerce_maven
这是作业的第二题:使用struts实现电子商务网站,这是基于之前的代码的,所以,主要就是修改成为struts的mvc模式. 1.开始,先把以前做的一个maven项目修改成为另一个项目(简称重命名) 重 ...
- AS3.0 自定义右键菜单类
AS3.0 自定义右键菜单类: /** * 自定义右键菜单类 * 自定义菜单项不得超过15个,每个标题必须至少包含一个可见字符. * 标题字符不能超过100个,并且开头的空白字符会被忽略. * 与任何 ...
- 大数据入门第十六天——流式计算之storm详解(一)入门与集群安装
一.概述 今天起就正式进入了流式计算.这里先解释一下流式计算的概念 离线计算 离线计算:批量获取数据.批量传输数据.周期性批量计算数据.数据展示 代表技术:Sqoop批量导入数据.HDFS批量存储数据 ...
- Android应用安全之脆弱的加密
程序员希望通过加密来提升程序的安全性性,但却缺乏专业的密码学背景知识,使得应用对数据的保护非常薄弱.本文将介绍可能出现在Android应用中的一些脆弱的加密方式,以及对应的攻击方法. 造成脆弱加密的主 ...
- linux 升级 5.0.2内核
1.下载 wet https://cdn.kernel.org/pub/linux/kernel/v5.x/linux-5.0.2.tar.xz -o /usr/src/ cd /usr/src ta ...
- Package 设计3:数据源的提取和使用暂存
SSIS 设计系列: Package设计1:选择数据类型.暂存数据和并发 Package设计2:增量更新 Package 设计3:数据源的提取和使用暂存 在使用SSIS Package处理海量数据时, ...