MT【125】四点共圆
(2017湖南省高中数学竞赛16题)
\(AB\)是椭圆\(mx^2+ny^2=1(m>0,n>0,m\ne n)\)的斜率为 1 的弦.\(AB\)的垂直平分线与椭圆交于两点\(CD\)
(1)求证:\(|CD|^2-|AB|^2=4|EF|^2\) 其中\(E,F\)为\(AB,CD\) 的中点.
(2)证明:\(A,B,C,D\) 四点共圆.

证明第(2)问: 设\(AB,CD\)的交点\(P(x_0,y_0)\),过点\(P\)的直线方程为
\[\begin{equation*}
\left\{ \begin{aligned}
x &= x_0+t \\
y&=y_0+kt
\end{aligned} \right.
\end{equation*}\]
与椭圆联立可得 \(m(x_0+t)^2+n(y_0+kt)^2=1\);
整理得 \((m+nk^2)t^2+2(mx_0+ny_0k)t+mx_0^2+ny_0^2-1=0\)
得到\(t_1t_2=\dfrac{mx_0^2+ny_0^2-1}{m+nk^2} ( \textbf{为定值})\) (由题意这里 \(k=\pm 1\))
故由相交线定理可得\(A,B,C,D\)四点共圆.
事实上,由上面的证明过程我们可以得到更一般的结论:非圆二次曲线,如果对称轴在 \(x\) 轴或者\(y\)轴上(相当于没有xy交叉项).对应的\(AC\)与\(BD\)直线如果斜率互为相反数(保证了\(k^2\)相等),则四点共圆.
MT【125】四点共圆的更多相关文章
- MT【210】四点共圆+角平分线
(2018全国联赛解答最后一题)在平面直角坐标系$xOy$中,设$AB$是抛物线$y^2=4x$的过点$F(1,0)$的弦,$\Delta{AOB}$的外接圆交抛物线于点$P$(不同于点$A,O,B$ ...
- MT【306】圆与椭圆公切线段
已知椭圆方程$\dfrac{x^2}{4}+\dfrac{y^2}{3}=1$,圆方程$x^2+y^2=r^2,(3<r^2<4)$,若直线$l$与椭圆和圆分别切于点$P,Q$求$|PQ| ...
- Pick定理、欧拉公式和圆的反演
Pick定理.欧拉公式和圆的反演 Tags:高级算法 Pick定理 内容 定点都是整点的多边形,内部整点数为\(innod\),边界整点数\(ednod\),\(S=innod+\frac{ednod ...
- hihoCoder挑战赛14 A,B,C题解
转载请注明出处: http://www.cnblogs.com/fraud/ ——by fraud 题目1 : 不等式 时间限制:10000ms 单点时限:1000ms 内存限制:2 ...
- poj1981 Circle and Points 单位圆覆盖问题
转载请注明出处: http://www.cnblogs.com/fraud/ ——by fraud Circle and Points Time Limit: 5000MS Me ...
- poj2187 Beauty Contest(旋转卡壳)
转载请注明出处: http://www.cnblogs.com/fraud/ ——by fraud Beauty Contest Time Limit: 3000MS Memor ...
- poj1127 Jack Straws(线段相交+并查集)
转载请注明出处: http://www.cnblogs.com/fraud/ ——by fraud Jack Straws Time Limit: 1000MS Memory L ...
- [ZJOI2018]保镖
[ZJOI2018]保镖 Tags:题解 题意 链接 初始在平面上有一些点,九条可怜随机出现在一个矩形内的任意一点.若九条可怜出现在\(O\)点,则平面上所有的点都从\(P_i\)移动到\(P'_i\ ...
- 洛谷P4502 [ZJOI2018]保镖(计算几何+三维凸包)
题面 传送门 题解 我对计蒜几盒一无所知 顺便\(xzy\)巨巨好强 前置芝士 三维凸包 啥?你不会三维凸包?快去把板子写了->这里 欧拉公式 \[V-E+F=2\] \(V:vertex\)顶 ...
随机推荐
- Transaction Check Error:file /usr/libexec/getconf/default conflicts between attempted installs of gcc-6.4.1-1.fc25.i686 and gcc-6.4.1-1.fc25.x86_64
今天在我的ubuntu系统上使用yum来安装软件时出错了错误:Transaction Check Error:file /usr/libexec/getconf/default conflicts b ...
- Java基础—面向对象
一.什么叫面向对象 万物皆对象(待更正) 二.面向对象三大特征 抽象:把一类对象共同特征进行抽取构造类的过程,包括两种抽象:第一种是数据抽象,也就是对象的属性.第二种是过程抽象,也就是对象的行为 封装 ...
- 20155226 《网络对抗》Exp9 Web安全基础
20155226 <网络对抗>Exp9 Web安全基础 实践过程 开启webgoat 输入java -jar webgoat-container-7.1-exec.jar 在浏览器输入lo ...
- 使用nginx很卡之strace命令
一.strace命令常用参数 strace -tt -T -v -f -e trace= -p -tt 在每行输出的前面,显示毫秒级别的时间 -T 显示每次系统调用所花费的时间 -v 对于某些相关调用 ...
- 在git与tortoisegit中使用openSSH与PuTTY
问题 在使用Git与tortoisegit的时候,指定远程版本库的地址有2种方式: 使用https方式的git地址非常直接(https://xxx.oschina.net/xxx.git),基本上什么 ...
- 自动化部署-Jenkins+SVN+MSBuild
这篇文章主要介绍下使用Jenkins实现自动化部署 下载 https://jenkins.io/download/ 安装 按步骤安装即可,下载的是windows版本,安装完成后,会看到这样一个正在运行 ...
- 转 git config命令使用
. git config简介 我们知道config是配置的意思,那么git config命令就是对git进行一些配置.而配置一般都是写在配置文件里面,那么git的配置文件在哪里呢?互动一下,先问下大家 ...
- java后台面试知识点总结
本文主要记录在准备面试过程中遇到的一些基本知识点(持续更新) 一.Java基础知识 1.抽象类和接口的区别 接口和抽象类中都可以定义变量,但是接口中定义的必须是公共的.静态的.Final的,抽象类中的 ...
- LintCode——筛子求和
描述:扔n个骰子,向上面的数字之和为 S .给定 Given n,请列出所有可能的 S 值及其相应的概率. 样例:给定n=1,返回 [ [1, 0.17], [2, 0.17], [3, 0.17], ...
- 四种遍历hashMap的方法及比较
学习怎样遍历Java hashMap及不同方法的性能. // hashMap的遍历 public void testHashMap() { Map<String, String> map ...