(2017湖南省高中数学竞赛16题)
\(AB\)是椭圆\(mx^2+ny^2=1(m>0,n>0,m\ne n)\)的斜率为 1 的弦.\(AB\)的垂直平分线与椭圆交于两点\(CD\)
(1)求证:\(|CD|^2-|AB|^2=4|EF|^2\) 其中\(E,F\)为\(AB,CD\) 的中点.
(2)证明:\(A,B,C,D\) 四点共圆.

证明第(2)问: 设\(AB,CD\)的交点\(P(x_0,y_0)\),过点\(P\)的直线方程为
\[\begin{equation*}
\left\{ \begin{aligned}
x &= x_0+t \\
y&=y_0+kt
\end{aligned} \right.
\end{equation*}\]
与椭圆联立可得 \(m(x_0+t)^2+n(y_0+kt)^2=1\);
整理得 \((m+nk^2)t^2+2(mx_0+ny_0k)t+mx_0^2+ny_0^2-1=0\)
得到\(t_1t_2=\dfrac{mx_0^2+ny_0^2-1}{m+nk^2} ( \textbf{为定值})\) (由题意这里 \(k=\pm 1\))
故由相交线定理可得\(A,B,C,D\)四点共圆.
事实上,由上面的证明过程我们可以得到更一般的结论:非圆二次曲线,如果对称轴在 \(x\) 轴或者\(y\)轴上(相当于没有xy交叉项).对应的\(AC\)与\(BD\)直线如果斜率互为相反数(保证了\(k^2\)相等),则四点共圆.

MT【125】四点共圆的更多相关文章

  1. MT【210】四点共圆+角平分线

    (2018全国联赛解答最后一题)在平面直角坐标系$xOy$中,设$AB$是抛物线$y^2=4x$的过点$F(1,0)$的弦,$\Delta{AOB}$的外接圆交抛物线于点$P$(不同于点$A,O,B$ ...

  2. MT【306】圆与椭圆公切线段

    已知椭圆方程$\dfrac{x^2}{4}+\dfrac{y^2}{3}=1$,圆方程$x^2+y^2=r^2,(3<r^2<4)$,若直线$l$与椭圆和圆分别切于点$P,Q$求$|PQ| ...

  3. Pick定理、欧拉公式和圆的反演

    Pick定理.欧拉公式和圆的反演 Tags:高级算法 Pick定理 内容 定点都是整点的多边形,内部整点数为\(innod\),边界整点数\(ednod\),\(S=innod+\frac{ednod ...

  4. hihoCoder挑战赛14 A,B,C题解

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud 题目1 : 不等式 时间限制:10000ms 单点时限:1000ms 内存限制:2 ...

  5. poj1981 Circle and Points 单位圆覆盖问题

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud Circle and Points Time Limit: 5000MS   Me ...

  6. poj2187 Beauty Contest(旋转卡壳)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud Beauty Contest Time Limit: 3000MS   Memor ...

  7. poj1127 Jack Straws(线段相交+并查集)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud Jack Straws Time Limit: 1000MS   Memory L ...

  8. [ZJOI2018]保镖

    [ZJOI2018]保镖 Tags:题解 题意 链接 初始在平面上有一些点,九条可怜随机出现在一个矩形内的任意一点.若九条可怜出现在\(O\)点,则平面上所有的点都从\(P_i\)移动到\(P'_i\ ...

  9. 洛谷P4502 [ZJOI2018]保镖(计算几何+三维凸包)

    题面 传送门 题解 我对计蒜几盒一无所知 顺便\(xzy\)巨巨好强 前置芝士 三维凸包 啥?你不会三维凸包?快去把板子写了->这里 欧拉公式 \[V-E+F=2\] \(V:vertex\)顶 ...

随机推荐

  1. CAN总线学习系列之二——CAN总线与RS485的比较

    CAN总线学习系列之二——CAN总线与RS485的比较 上 一节介绍了一下CAN总线的基本知识,那么有人会问,现在的总线格式很多,CAN相对于其他的总线有什么特点啊?这个问题问的好,所以我想与其它总线 ...

  2. ORACLE官网下载登陆账号能够使用

    username: responsecool@sina.com password: abc123ABC http://www.oracle.com/index.html

  3. Maven的继承与聚合——多模块开发

    一:Maven多模块项目,适用于一些比较大的项目,通过合理的模块拆分,实现代码的复用,便于维护和管理.尤其是一些开源框架,也是采用多模块的方式,提供插件集成,用户可以根据需要配置指定的模块. 二:继承 ...

  4. javaScript之jQuery框架

    一.jQuery简介   jQuery是一个快速.简洁的JavaScript框架,是继Prototype之后又一个优秀的JavaScript代码库(或JavaScript框架).jQuery设计的宗旨 ...

  5. 20155209 林虹宇 Exp 8 Web基础

    Exp 8 Web基础 Web前端HTML 正常安装.启停Apache kali本机自带apache,上个实验已经使用过,直接使用 查看80端口. 127.0.0.1 编写一个含有表单的html 在浏 ...

  6. 2017-2018-2 『网络对抗技术』Exp2:后门原理与实践

    1. 后门原理与实践实验说明及预备知识 一.实验说明 任务一:使用netcat获取主机操作Shell,cron启动 (0.5分) 任务二:使用socat获取主机操作Shell, 任务计划启动 (0.5 ...

  7. matplotlib 雷达图2

    说明 搞了一个最新版本的雷达图,比以前那个美观. 不多说,代码奉上: 完整代码 ''' matplotlib雷达图 ''' import numpy as np import matplotlib.p ...

  8. SSIS 连接数据

    通常情况下,ETL方案需要同时访问两个或多个数据源,并把结果合并为单个数据流,输出到目标表中.为了向目标表中提供统一的数据结构,需要把多个数据源连接在一起.数据连接的另外一种用法,就是根据现有的数据, ...

  9. stl源码剖析 详细学习笔记 hashtable

    //---------------------------15/03/24---------------------------- //hashtable { /* 概述: sgi采用的是开链法完成h ...

  10. C#调用python文件执行

    我的电脑环境是使用.net framework4.5.1,如果在调试过程中调不通请注意 我用的是Visual studion 2017,python组件下载地址:http://ironpython.c ...