题面

先往上套Burnside引理

既然要求没有$\frac{2*π}{n}$的角,也就是说两个人不能挨着,那么相当于给一个环黑白染色,两个相邻的点不能染白色,同时求方案数。考虑$n$个置换子群,即向一边旋转i(1<=i<=n)个单位,那么每个置换子群下循环节的长度是$lcm(i,n)/i$,那循环节数目就是$n/(lcm(i,n)/i)=gcd(i,n)$,然后式子就出来了,设$p(i)$是给长度为$i$的环染色的方案

$ans=\frac{\sum\limits_{i=1}^np(gcd(i,n))}{n}$

如果我们能快速算$p$那么枚举$d=gcd(i,n)$即可,现在考虑如何算$p$,不妨先设$dp[i][0/1]$表示染了长度为$i$的环,两边白色的点的数目为$0/1$的方案数,转移显然

$dp[i][0]=dp[i-1][0]+dp[i-1][1],dp[i][1]=dp[i-1][0]$

可见$dp[i][0]$就是$i-1$的答案,$dp[i][1]$就是$dp[i-1][0]$也就是$i-2$的答案,所以$p[i]=p[i-1]+p[i-2]$,矩乘即可

注意$n=1$“两边”都是可以染白色的,判掉

 #include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int mod=1e9+;
struct a
{
int mat[][];
void Clean()
{
memset(mat,,sizeof mat);
}
void Init1()
{
Clean();
mat[][]=,mat[][]=;
}
void Init2()
{
Clean();
mat[][]=mat[][]=mat[][]=;
}
};
a Matime(a x,a y)
{
a ret; ret.Clean();
for(int i=;i<;i++)
for(int k=;k<;k++)
for(int j=;j<;j++)
ret.mat[i][j]+=1ll*x.mat[i][k]*y.mat[k][j]%mod,ret.mat[i][j]%=mod;
return ret;
}
a Maqpow(a x,int k)
{
if(k==) return x;
a tmp=Maqpow(x,k/);
return k%?Matime(x,Matime(tmp,tmp)):Matime(tmp,tmp);
}
int Calc(int x)
{
if(x==) return ;
if(x==) return ;
a fir,cal; fir.Init1(),cal.Init2();
cal=Maqpow(cal,x-),fir=Matime(fir,cal);
return fir.mat[][];
}
int Phi(int x)
{
int ret=x;
for(int i=;i*i<=x;i++)
if(x%i==)
{
ret/=i,ret*=i-;
while(x%i==) x/=i;
}
if(x!=) ret/=x,ret*=x-;
return ret;
}
void exGCD(int a,int b,int &x,int &y)
{
if(!b) x=,y=;
else exGCD(b,a%b,y,x),y-=a/b*x;
}
int Inv(int x)
{
int xx,yy;
exGCD(x,mod,xx,yy);
return (xx%mod+mod)%mod;
}
int Solve(int x)
{
if(x==) return ;
int ret=;
for(int i=;i*i<=x;i++)
if(x%i==)
{
ret+=1ll*Phi(x/i)*Calc(i)%mod,ret%=mod;
if(i*i!=x) ret+=1ll*Phi(i)*Calc(x/i)%mod,ret%=mod;
}
return 1ll*ret*Inv(x)%mod;
}
int main()
{
int n;
while(scanf("%d",&n)!=EOF)
printf("%d\n",Solve(n));
return ;
}

解题:HDU 5868 Different Circle Permutation的更多相关文章

  1. HDU 5868 Different Circle Permutation(burnside 引理)

    HDU 5868 Different Circle Permutation(burnside 引理) 题目链接http://acm.hdu.edu.cn/showproblem.php?pid=586 ...

  2. hdu 5868:Different Circle Permutation 【Polya计数】

    似乎是比较基础的一道用到polya定理的题,为了这道题扣了半天组合数学和数论. 等价的题意:可以当成是给正n边形的顶点染色,旋转同构,两种颜色,假设是红蓝,相邻顶点不能同时为蓝. 大概思路:在不考虑旋 ...

  3. HDU 5868 Different Circle Permutation

    公式,矩阵快速幂,欧拉函数,乘法逆元. $an{s_n} = \frac{1}{n}\sum\limits_{d|n} {\left[ {phi(\frac{n}{d})×\left( {fib(d ...

  4. HDU 5868 Different Circle Permutation Burnside引理+矩阵快速幂+逆元

    题意:有N个座位,人可以选座位,但选的座位不能相邻,且旋转不同构的坐法有几种.如4个座位有3种做法.\( 1≤N≤1000000000 (10^9) \). 题解:首先考虑座位不相邻的选法问题,如果不 ...

  5. hdu 5868 Polya计数

    Different Circle Permutation Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 262144/262144 K ...

  6. hdu 5225 Tom and permutation(回溯)

    题目链接:hdu 5225 Tom and permutation #include <cstdio> #include <cstring> #include <algo ...

  7. hdu 5868 2016 ACM/ICPC Asia Regional Dalian Online 1001 (burnside引理 polya定理)

    Different Circle Permutation Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 262144/262144 K ...

  8. hdu_5868:Different Circle Permutation

    似乎是比较基础的一道用到polya定理的题,为了这道题扣了半天组合数学和数论. 等价的题意:可以当成是给正n边形的顶点染色,旋转同构,两种颜色,假设是红蓝,相邻顶点不能同时为蓝. 大概思路:在不考虑旋 ...

  9. HDU - 6446 Tree and Permutation

    传送门:http://acm.hdu.edu.cn/showproblem.php?pid=6446 本题是一个树上的问题——DFS. 一棵N个结点的树,其结点为1~N.树具有N-1条边,每一条边具有 ...

随机推荐

  1. JavaEE笔记(十)

    #Spring 为了配置bean对象和维护bean对象之间关系的一个容器框架 #三种注入方法 1 Setter注入2 构造参数注入3 注解注入(原理同1) #自动装配(autowire) 模式 说明 ...

  2. [CF1025F]Disjoint Triangles[极角排序+组合计数]

    题意 平面上有 \(n\) 个点,选出六个点构成两个三角形,问有多少种构造方式使得两个三角形没有交集. \(n\leq 2000\) 分析 枚举连接两个三角形的两个顶点,同时能够将两个三角形划分在直线 ...

  3. 本地mysql快速迁移到服务器数据库中

    我们可以使用linux的scp命令(scp无法在windows使用),加上mysql自带的mysqldump,能很快的完成数据库的迁移 将本地的数据库(music_db)导出为sql文件(music_ ...

  4. 使用Redis做分布式

    一 为什么使用 Redis 在项目中使用 Redis,主要考虑两个角度:性能和并发.如果只是为了分布式锁这些其他功能,还有其他中间件 Zookpeer 等代替,并非一定要使用 Redis. 性能: 如 ...

  5. R绘图 第六篇:绘制线图(ggplot2)

    线图是由折线构成的图形,线图是把散点从左向右用直线连接起来而构成的图形,在以时间序列为x轴的线图中,可以看到数据增长的趋势. geom_line(mapping = NULL, data = NULL ...

  6. Java 多线程(四)之守护线程(Daemon)

    目录 定义 如何创建 判断 注意事项 函数setDaemon(true)必须在 start() 函数之前使用. 守护线程中产生的线程也是守护线程: 测试 @ 定义 Java 中有两种线程: 一种是用户 ...

  7. Zabbix使用总结

    1. CentOS 7上启动zabbix-server失败,/var/log/messages中的报错信息如下: Feb :: mysql-server1 systemd: Starting Zabb ...

  8. 一个Python开源项目-哈勃沙箱源码剖析(下)

    前言 在上一篇中,我们讲解了哈勃沙箱的技术点,详细分析了静态检测和动态检测的流程.本篇接着对动态检测的关键技术点进行分析,包括strace,sysdig,volatility.volatility的介 ...

  9. C#集合与泛型集合

    看到这个标题,大家应该就知道有泛型集合,就有非泛型集合 既然都是集合,咱们今儿就简单的来对比讲解下 需要记住的不算太多,理解记忆.理解记忆 2017-11-0411:39:09 C# 泛型集合之非泛型 ...

  10. SpringBoot日记——信息修改PUT篇

    我们常用的功能,除了post和get,还有put和delete,这篇文章就介绍一下这个put的基本用法. 页面跳转和回显 1. 首先,我们之前的页面已经将添加和修改的按钮都做好了,那么如何实现这些按钮 ...