题面

先往上套Burnside引理

既然要求没有$\frac{2*π}{n}$的角,也就是说两个人不能挨着,那么相当于给一个环黑白染色,两个相邻的点不能染白色,同时求方案数。考虑$n$个置换子群,即向一边旋转i(1<=i<=n)个单位,那么每个置换子群下循环节的长度是$lcm(i,n)/i$,那循环节数目就是$n/(lcm(i,n)/i)=gcd(i,n)$,然后式子就出来了,设$p(i)$是给长度为$i$的环染色的方案

$ans=\frac{\sum\limits_{i=1}^np(gcd(i,n))}{n}$

如果我们能快速算$p$那么枚举$d=gcd(i,n)$即可,现在考虑如何算$p$,不妨先设$dp[i][0/1]$表示染了长度为$i$的环,两边白色的点的数目为$0/1$的方案数,转移显然

$dp[i][0]=dp[i-1][0]+dp[i-1][1],dp[i][1]=dp[i-1][0]$

可见$dp[i][0]$就是$i-1$的答案,$dp[i][1]$就是$dp[i-1][0]$也就是$i-2$的答案,所以$p[i]=p[i-1]+p[i-2]$,矩乘即可

注意$n=1$“两边”都是可以染白色的,判掉

 #include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int mod=1e9+;
struct a
{
int mat[][];
void Clean()
{
memset(mat,,sizeof mat);
}
void Init1()
{
Clean();
mat[][]=,mat[][]=;
}
void Init2()
{
Clean();
mat[][]=mat[][]=mat[][]=;
}
};
a Matime(a x,a y)
{
a ret; ret.Clean();
for(int i=;i<;i++)
for(int k=;k<;k++)
for(int j=;j<;j++)
ret.mat[i][j]+=1ll*x.mat[i][k]*y.mat[k][j]%mod,ret.mat[i][j]%=mod;
return ret;
}
a Maqpow(a x,int k)
{
if(k==) return x;
a tmp=Maqpow(x,k/);
return k%?Matime(x,Matime(tmp,tmp)):Matime(tmp,tmp);
}
int Calc(int x)
{
if(x==) return ;
if(x==) return ;
a fir,cal; fir.Init1(),cal.Init2();
cal=Maqpow(cal,x-),fir=Matime(fir,cal);
return fir.mat[][];
}
int Phi(int x)
{
int ret=x;
for(int i=;i*i<=x;i++)
if(x%i==)
{
ret/=i,ret*=i-;
while(x%i==) x/=i;
}
if(x!=) ret/=x,ret*=x-;
return ret;
}
void exGCD(int a,int b,int &x,int &y)
{
if(!b) x=,y=;
else exGCD(b,a%b,y,x),y-=a/b*x;
}
int Inv(int x)
{
int xx,yy;
exGCD(x,mod,xx,yy);
return (xx%mod+mod)%mod;
}
int Solve(int x)
{
if(x==) return ;
int ret=;
for(int i=;i*i<=x;i++)
if(x%i==)
{
ret+=1ll*Phi(x/i)*Calc(i)%mod,ret%=mod;
if(i*i!=x) ret+=1ll*Phi(i)*Calc(x/i)%mod,ret%=mod;
}
return 1ll*ret*Inv(x)%mod;
}
int main()
{
int n;
while(scanf("%d",&n)!=EOF)
printf("%d\n",Solve(n));
return ;
}

解题:HDU 5868 Different Circle Permutation的更多相关文章

  1. HDU 5868 Different Circle Permutation(burnside 引理)

    HDU 5868 Different Circle Permutation(burnside 引理) 题目链接http://acm.hdu.edu.cn/showproblem.php?pid=586 ...

  2. hdu 5868:Different Circle Permutation 【Polya计数】

    似乎是比较基础的一道用到polya定理的题,为了这道题扣了半天组合数学和数论. 等价的题意:可以当成是给正n边形的顶点染色,旋转同构,两种颜色,假设是红蓝,相邻顶点不能同时为蓝. 大概思路:在不考虑旋 ...

  3. HDU 5868 Different Circle Permutation

    公式,矩阵快速幂,欧拉函数,乘法逆元. $an{s_n} = \frac{1}{n}\sum\limits_{d|n} {\left[ {phi(\frac{n}{d})×\left( {fib(d ...

  4. HDU 5868 Different Circle Permutation Burnside引理+矩阵快速幂+逆元

    题意:有N个座位,人可以选座位,但选的座位不能相邻,且旋转不同构的坐法有几种.如4个座位有3种做法.\( 1≤N≤1000000000 (10^9) \). 题解:首先考虑座位不相邻的选法问题,如果不 ...

  5. hdu 5868 Polya计数

    Different Circle Permutation Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 262144/262144 K ...

  6. hdu 5225 Tom and permutation(回溯)

    题目链接:hdu 5225 Tom and permutation #include <cstdio> #include <cstring> #include <algo ...

  7. hdu 5868 2016 ACM/ICPC Asia Regional Dalian Online 1001 (burnside引理 polya定理)

    Different Circle Permutation Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 262144/262144 K ...

  8. hdu_5868:Different Circle Permutation

    似乎是比较基础的一道用到polya定理的题,为了这道题扣了半天组合数学和数论. 等价的题意:可以当成是给正n边形的顶点染色,旋转同构,两种颜色,假设是红蓝,相邻顶点不能同时为蓝. 大概思路:在不考虑旋 ...

  9. HDU - 6446 Tree and Permutation

    传送门:http://acm.hdu.edu.cn/showproblem.php?pid=6446 本题是一个树上的问题——DFS. 一棵N个结点的树,其结点为1~N.树具有N-1条边,每一条边具有 ...

随机推荐

  1. PySide图形界面开发(一)

    一.为什么要使用PySide? PySide由Qt的官方团队--Nokia Qt进行维护,集成了Qt和Python的优势.一个PySide程序员只需要使用简单的Python语言就能够发挥Qt的所有功能 ...

  2. Windows Server2003 IIS服务器安全配置整理

    一.系统的安装   1.按照Windows2003安装光盘的提示安装,默认情况下2003没有把IIS6.0安装在系统里面.2.IIS6.0的安装 开始菜单—>控制面板—>添加或删除程序—& ...

  3. 20155210 Exp2 后门原理与实践

    20155210 Exp2 后门原理与实践 1.Windows获得Linux Shell 在windows下,打开CMD,使用ipconfig指令查看本机IP 如图: 然后使用ncat.exe程序,n ...

  4. 20155318 《网络攻防》Exp5 MSF基础应用

    20155318 <网络攻防>Exp5 MSF基础应用 基础问题 用自己的话解释什么是exploit,payload,encode? exploit就相当于是载具,将真正要负责攻击的代码传 ...

  5. STM32一键下载电路设计原理

    先放原理图(补充:图中的BOOT0通过10K的电阻接到地),再解释为什么这么设计: STM32启动方式:BOOT0和 BOOT1用于设置 STM32的启动方式 ,见下表: BOOT0=1,BOOT1= ...

  6. 【Qt】QLabel实现的圆形图像

    本篇只描述圆形图像的两种实现方式,动态阴影边框如下: [Qt]QLabel之动态阴影边框 目前实现的效果如下: 左右两边实现的方式不同: 右边比较简单 min-width: 100px; max-wi ...

  7. Node总结 模块机制

    1. Node中的模块分为两类.一个是node提供的模块,称为核心模块,如http, fs, path:另一类是用户编写的模块,称为文件模块. 2. require()方法接收一个标识符进行模块查找. ...

  8. UI自动化环境准备

    1.安装专业版pycharm,只要是填写了licensed的都是专业版本的pycharm 2.python中安装好selenium包  pip install selenium 3.python中安装 ...

  9. 数位DP模板详解

    // pos = 当前处理的位置(一般从高位到低位) // pre = 上一个位的数字(更高的那一位) // status = 要达到的状态,如果为1则可以认为找到了答案,到时候用来返回, // 给计 ...

  10. Spring+SpringMVC+MyBatis+easyUI整合优化篇(一)Java语言中System.out.print与Log的比较

    作者:13 GitHub:https://github.com/ZHENFENG13 版权声明:本文为原创文章,未经允许不得转载. 前言 距离上一次更新博客有一段时间了,主要是因为最近有开发任务,另外 ...