--------------------------------------------------中文翻译-----------------------------------------------------------------------------------------

1、神经元的计算是什么?(B)

A. 在将输出应用到激活函数之前, 神经元计算所有特征的平均值

B. 神经元计算一个线性函数 (z = Wx + b), 然后是一个激活函数

C. 神经元计算一个激活函数, 后跟一个线性函数 (z = Wx + b)

D. 一个神经元计算一个函数 g, 它将输入 x 线性地缩放 (Wx + b)

2、下面哪个是损失函数?(B)

见对应的英文题2

3、假设 img 是一个 (32,32,3) 数组, 代表一个32x32 的图像与3色通道红色, 绿色和蓝色。如何将其重塑为列向量?(B)

A. x = img 重塑 (32 * 32,3))

B. x = img 重塑 (32 * 32 * 3,1))

C. x = img 重塑 (1,32 * 32, * 3))
D. x = img 重塑 (3,32 * 32))
 
4、考虑以下两个随机数组 "a" 和 "b", "c" 的形状是什么?(B)
a = np.random.randn(2, 3) # a.shape = (2, 3)
b = np.random.randn(2, 1) # b.shape = (2, 1)
c = a + b

A. c.shape = (2, 1)

B. c.shape = (2, 3)

C. c.shape = (3, 2)

D. 由于大小不匹配, 无法进行计算。这将是 "错误"!

5、考虑以下两个随机数组 "a" 和 "b", "c" 的形状是什么?(A)

a = np.random.randn(4, 3) # a.shape = (4, 3)
b = np.random.randn(3, 2) # b.shape = (3, 2)
c = a*b

A. 由于大小不匹配, 无法进行计算。这将是 "错误"!

A. c.shape = (3, 3)

B. c.shape = (4, 2)

C. c.shape = (4, 3)

6、假设每一个样本的特征为nx维,X=[x(1)x(2)...x(m)],X的维度是多少?(A)

A. (nx,m)

B. (1,m)

C. (m,1)

D. (m,nx)

7、记得 "np. dot(a, b)" 在 a 和 b 上执行矩阵乘法, 而 "a * b" 执行元素乘法。考虑以下两个随机数组 "a" 和 "b":

a = np.random.randn(12288, 150) # a.shape = (12288, 150)
b = np.random.randn(150, 45) # b.shape = (150, 45)
c = np.dot(a,b)
c 的形状是什么?(D)

A. c. 形状 = (12288, 150)

B. 由于大小不匹配, 无法进行计算。这将是 "错误"!

C. c. 形状 = (150150)

D. c. 形状 = (12288, 45)

8、请考虑以下代码段,你怎么量化?(B)

# a.shape = (3,4)
# b.shape = (4,1) for i in range(3):
for j in range(4):
c[i][j] = a[i][j] + b[j]

A. c = a + b

B. c = a + b.T

C. c = a.T + b

D. c = a.T + b.T

9、请考虑以下代码:c的结果?(如果您不确定, 请随时在 python 中运行此查找)。(A)

a = np.random.randn(3, 3)
b = np.random.randn(3, 1)
c = a*b
A. 这将触发广播机制, 所以 b 被复制三次,成为 (3,3), * 代表矩阵对应元素相乘, 所以 c 的大小将是 (3, 3)
B. 这将触发广播机制, 所以 b 被复制三次,成为 (3, 3), * 代表矩阵乘法,运算两个3x3 的矩阵, 所以 c的大小将是 (3, 3)
C. 这将乘以一个3x3 矩阵 a 与一个3x1 向量b, 从而得到一个3x1 向量。即, c的大小 (3,1)。
D. 这将导致错误, 因为您不能使用 "*" 来操作这两个矩阵。你需要改用 np.dot(a, b)
 
10、考虑下面的计算图。什么是输出 J?(B) (注:由于网站无法显示图片,这题答案不确定。考察的知识点是计算图)
 

A. J = (c - 1)*(b + a)

B. J = (a - 1) * (b + c)

C. J = a*b + b*c + a*c

D. J = (b - 1) * (c + a)

 

课程一(Neural Networks and Deep Learning),第二周(Basics of Neural Network programming)—— 1、10个测验题(Neural Network Basics)的更多相关文章

  1. 吴恩达《深度学习》-第一门课 (Neural Networks and Deep Learning)-第二周:(Basics of Neural Network programming)-课程笔记

    第二周:神经网络的编程基础 (Basics of Neural Network programming) 2.1.二分类(Binary Classification) 二分类问题的目标就是习得一个分类 ...

  2. 【DeepLearning学习笔记】Coursera课程《Neural Networks and Deep Learning》——Week2 Neural Networks Basics课堂笔记

    Coursera课程<Neural Networks and Deep Learning> deeplearning.ai Week2 Neural Networks Basics 2.1 ...

  3. 【DeepLearning学习笔记】Coursera课程《Neural Networks and Deep Learning》——Week1 Introduction to deep learning课堂笔记

    Coursera课程<Neural Networks and Deep Learning> deeplearning.ai Week1 Introduction to deep learn ...

  4. 第四节,Neural Networks and Deep Learning 一书小节(上)

    最近花了半个多月把Mchiael Nielsen所写的Neural Networks and Deep Learning这本书看了一遍,受益匪浅. 该书英文原版地址地址:http://neuralne ...

  5. Neural Networks and Deep Learning学习笔记ch1 - 神经网络

    近期開始看一些深度学习的资料.想学习一下深度学习的基础知识.找到了一个比較好的tutorial,Neural Networks and Deep Learning,认真看完了之后觉得收获还是非常多的. ...

  6. Neural Networks and Deep Learning

    Neural Networks and Deep Learning This is the first course of the deep learning specialization at Co ...

  7. [C3] Andrew Ng - Neural Networks and Deep Learning

    About this Course If you want to break into cutting-edge AI, this course will help you do so. Deep l ...

  8. 《Neural Networks and Deep Learning》课程笔记

    Lesson 1 Neural Network and Deep Learning 这篇文章其实是 Coursera 上吴恩达老师的深度学习专业课程的第一门课程的课程笔记. 参考了其他人的笔记继续归纳 ...

  9. 课程一(Neural Networks and Deep Learning),第二周(Basics of Neural Network programming)—— 4、Logistic Regression with a Neural Network mindset

    Logistic Regression with a Neural Network mindset Welcome to the first (required) programming exerci ...

  10. Neural Networks and Deep Learning 课程笔记(第四周)深层神经网络(Deep Neural Networks)

    1. 深层神经网络(Deep L-layer neural network ) 2. 前向传播和反向传播(Forward and backward propagation) 3. 总结 4. 深层网络 ...

随机推荐

  1. timerfd与eventfd

    1.timerfd timerfd是定时器描述符,通过timerfd_create()来创建它,timerfd_settime()来设置定时器时间,当时间到期定时器文件描述符就可读,所以能够在sele ...

  2. activemq部署

    系统环境 IP salt-master-1:192.168.0.156 salt-master-2:192.168.0.157 node-test-1:192.168.0.158 node-test- ...

  3. mysql学习之路_事物_存储过程_备份

    数据备份与还原 备份:将当前已有的数据保留. 还原:将已经保留的数据恢复到对应表中 为什么要做数据备份 1,防止数据丢失,被盗,误操作 2,保护数据记录 数据备份还原方式有多种:数据表备份 单表数据备 ...

  4. chmod用法

    以下是chmod的详细用法:chmod命令用于改变linux系统文件或目录的访问权限.用它控制文件或目录的访问权限.该命令有两种用法.一种是包含字母和操作符表达式的文字设定法:另一种是包含数字的数字设 ...

  5. poj 3278 Catch That Cow(bfs+队列)

    Description Farmer John has been informed of the location of a fugitive cow and wants to catch her i ...

  6. 2.2.5synchronized代码间的同步性

    package com.cky.bean; /** * Created by chenkaiyang on 2017/12/6. */ public class ObjectService { pub ...

  7. Java中的final关键字--浅析

    final基本用法: 修饰类,类不能被继承 修饰方法,方法不能被重写 修饰变量,变量变常量,不可修该 对于一个final变量,如果是基本数据类型的变量,则其数值一旦在初始化之后便不能更改:如果是引用类 ...

  8. POJ2536 Gopher II(二分图最大匹配)

    Gopher II Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 9005   Accepted: 3724 Descrip ...

  9. ESP-IDF3.0

    发行版v3.0的文档可在http://esp-idf.readthedocs.io/en/v3.0/上找到. 这是自发布v3.0-rc1以来的更改列表. 如果从以前的稳定版本V2.1进行升级,请检查v ...

  10. IT项目管理流程以及每个步骤用到的文档

    IT项目管理从大的方面可分为:1)项目启动阶段:2)项目计划阶段:3)项目的实施阶段:4)项目的结项阶段 1)项目启动阶段: 1.项目启动流程规范: 1.1项目启动的简介.目的和范围 1.2目的可行性 ...