--------------------------------------------------中文翻译-----------------------------------------------------------------------------------------

1、神经元的计算是什么?(B)

A. 在将输出应用到激活函数之前, 神经元计算所有特征的平均值

B. 神经元计算一个线性函数 (z = Wx + b), 然后是一个激活函数

C. 神经元计算一个激活函数, 后跟一个线性函数 (z = Wx + b)

D. 一个神经元计算一个函数 g, 它将输入 x 线性地缩放 (Wx + b)

2、下面哪个是损失函数?(B)

见对应的英文题2

3、假设 img 是一个 (32,32,3) 数组, 代表一个32x32 的图像与3色通道红色, 绿色和蓝色。如何将其重塑为列向量?(B)

A. x = img 重塑 (32 * 32,3))

B. x = img 重塑 (32 * 32 * 3,1))

C. x = img 重塑 (1,32 * 32, * 3))
D. x = img 重塑 (3,32 * 32))
 
4、考虑以下两个随机数组 "a" 和 "b", "c" 的形状是什么?(B)
a = np.random.randn(2, 3) # a.shape = (2, 3)
b = np.random.randn(2, 1) # b.shape = (2, 1)
c = a + b

A. c.shape = (2, 1)

B. c.shape = (2, 3)

C. c.shape = (3, 2)

D. 由于大小不匹配, 无法进行计算。这将是 "错误"!

5、考虑以下两个随机数组 "a" 和 "b", "c" 的形状是什么?(A)

a = np.random.randn(4, 3) # a.shape = (4, 3)
b = np.random.randn(3, 2) # b.shape = (3, 2)
c = a*b

A. 由于大小不匹配, 无法进行计算。这将是 "错误"!

A. c.shape = (3, 3)

B. c.shape = (4, 2)

C. c.shape = (4, 3)

6、假设每一个样本的特征为nx维,X=[x(1)x(2)...x(m)],X的维度是多少?(A)

A. (nx,m)

B. (1,m)

C. (m,1)

D. (m,nx)

7、记得 "np. dot(a, b)" 在 a 和 b 上执行矩阵乘法, 而 "a * b" 执行元素乘法。考虑以下两个随机数组 "a" 和 "b":

a = np.random.randn(12288, 150) # a.shape = (12288, 150)
b = np.random.randn(150, 45) # b.shape = (150, 45)
c = np.dot(a,b)
c 的形状是什么?(D)

A. c. 形状 = (12288, 150)

B. 由于大小不匹配, 无法进行计算。这将是 "错误"!

C. c. 形状 = (150150)

D. c. 形状 = (12288, 45)

8、请考虑以下代码段,你怎么量化?(B)

# a.shape = (3,4)
# b.shape = (4,1) for i in range(3):
for j in range(4):
c[i][j] = a[i][j] + b[j]

A. c = a + b

B. c = a + b.T

C. c = a.T + b

D. c = a.T + b.T

9、请考虑以下代码:c的结果?(如果您不确定, 请随时在 python 中运行此查找)。(A)

a = np.random.randn(3, 3)
b = np.random.randn(3, 1)
c = a*b
A. 这将触发广播机制, 所以 b 被复制三次,成为 (3,3), * 代表矩阵对应元素相乘, 所以 c 的大小将是 (3, 3)
B. 这将触发广播机制, 所以 b 被复制三次,成为 (3, 3), * 代表矩阵乘法,运算两个3x3 的矩阵, 所以 c的大小将是 (3, 3)
C. 这将乘以一个3x3 矩阵 a 与一个3x1 向量b, 从而得到一个3x1 向量。即, c的大小 (3,1)。
D. 这将导致错误, 因为您不能使用 "*" 来操作这两个矩阵。你需要改用 np.dot(a, b)
 
10、考虑下面的计算图。什么是输出 J?(B) (注:由于网站无法显示图片,这题答案不确定。考察的知识点是计算图)
 

A. J = (c - 1)*(b + a)

B. J = (a - 1) * (b + c)

C. J = a*b + b*c + a*c

D. J = (b - 1) * (c + a)

 

课程一(Neural Networks and Deep Learning),第二周(Basics of Neural Network programming)—— 1、10个测验题(Neural Network Basics)的更多相关文章

  1. 吴恩达《深度学习》-第一门课 (Neural Networks and Deep Learning)-第二周:(Basics of Neural Network programming)-课程笔记

    第二周:神经网络的编程基础 (Basics of Neural Network programming) 2.1.二分类(Binary Classification) 二分类问题的目标就是习得一个分类 ...

  2. 【DeepLearning学习笔记】Coursera课程《Neural Networks and Deep Learning》——Week2 Neural Networks Basics课堂笔记

    Coursera课程<Neural Networks and Deep Learning> deeplearning.ai Week2 Neural Networks Basics 2.1 ...

  3. 【DeepLearning学习笔记】Coursera课程《Neural Networks and Deep Learning》——Week1 Introduction to deep learning课堂笔记

    Coursera课程<Neural Networks and Deep Learning> deeplearning.ai Week1 Introduction to deep learn ...

  4. 第四节,Neural Networks and Deep Learning 一书小节(上)

    最近花了半个多月把Mchiael Nielsen所写的Neural Networks and Deep Learning这本书看了一遍,受益匪浅. 该书英文原版地址地址:http://neuralne ...

  5. Neural Networks and Deep Learning学习笔记ch1 - 神经网络

    近期開始看一些深度学习的资料.想学习一下深度学习的基础知识.找到了一个比較好的tutorial,Neural Networks and Deep Learning,认真看完了之后觉得收获还是非常多的. ...

  6. Neural Networks and Deep Learning

    Neural Networks and Deep Learning This is the first course of the deep learning specialization at Co ...

  7. [C3] Andrew Ng - Neural Networks and Deep Learning

    About this Course If you want to break into cutting-edge AI, this course will help you do so. Deep l ...

  8. 《Neural Networks and Deep Learning》课程笔记

    Lesson 1 Neural Network and Deep Learning 这篇文章其实是 Coursera 上吴恩达老师的深度学习专业课程的第一门课程的课程笔记. 参考了其他人的笔记继续归纳 ...

  9. 课程一(Neural Networks and Deep Learning),第二周(Basics of Neural Network programming)—— 4、Logistic Regression with a Neural Network mindset

    Logistic Regression with a Neural Network mindset Welcome to the first (required) programming exerci ...

  10. Neural Networks and Deep Learning 课程笔记(第四周)深层神经网络(Deep Neural Networks)

    1. 深层神经网络(Deep L-layer neural network ) 2. 前向传播和反向传播(Forward and backward propagation) 3. 总结 4. 深层网络 ...

随机推荐

  1. 相似性度量 Aprioir算法

    第三章 标称:转换成0,1来算,或者用非对称二元属性 二元:x1,x2的分布取00,01,10,11的二元属性个数,列表,算比例.不对称的二元属性就忽略00的属性个数 序数:转换成排位rif,度量:r ...

  2. Linux系统各发行版镜像下载(借阅)

    Linux各个版本资源下载 Linux系统各发行版镜像下载(持续更新) == Linux系统各发行版镜像下载(2014年10月更新),如果直接下载不了,请使用迅雷下载.并且注意,我的下载地址,在  迅 ...

  3. git 版本库拆分和subtree用法

    git 版本库拆分 原文地址: https://segmentfault.com/a/1190000002548731 程序员最爽的事情是什么?删删删!所有项目本来都很苗条的,时间长了难免有一些越搞越 ...

  4. Arria10中PHY的时钟线结构

    发送器时钟网络由发送器PLL到发送器通道,它为发送器提供两种时钟 高速串行时钟——串化器的高速时钟 低速并行时钟——串化器和PCS的低速时钟 在绑定通道模式,串行和并行时钟都是由发送器的PLL提供给发 ...

  5. .net 根据网址生成静态页

    生成HTML页面代码 public int Htmls(int id) { ; string strHtmlContent = ""; HttpWebRequest request ...

  6. 1057 Stack 树状数组

    Stack is one of the most fundamental data structures, which is based on the principle of Last In Fir ...

  7. (拓扑)确定比赛名次 -- hdu -- 1285

    http://acm.hdu.edu.cn/showproblem.php?pid=1285 确定比赛名次 Time Limit: 2000/1000 MS (Java/Others)    Memo ...

  8. 02:OC和C对比

    1.源文件对比 C语言中常见源文件.h头文件,.c文件 文件扩展名 源类型 .h 头文件,用于存放函数声明 .c C语言源文件,用于实现头文件中声明的方法 OC中的源文件.h头文件,.m与.mm的实现 ...

  9. 转载:$(function() {}),即$(document).ready(function(),什么时候执行?以此为准,真理

    转载:https://blog.csdn.net/Ideality_hunter/article/details/77935656 $(function() { //执行操作 }); $(functi ...

  10. hdu 4135 [a,b]中n互质数个数+容斥

    http://acm.hdu.edu.cn/showproblem.php?pid=4135 给定一个数n,求某个区间[a,b]内有多少数与这个数互质. 对于一个给定的区间,我们如果能够求出这个区间内 ...