题意

题目链接

分析

  • 将询问差分并不断加入颜色。

  • 每种颜色,一个位置 \(p\) 都只会走到与之左右相邻的两个位置之一,分类讨论 \(\rm |A-B|\) 的符号。

  • 实现可以使用树状数组。

  • 总时间复杂度为 \(O(nlogn)\)。

代码

#include<bits/stdc++.h>
using namespace std;
#define go(u) for(int i=head[u],v=e[i].to;i;i=e[i].last,v=e[i].to)
#define rep(i,a,b) for(int i=a;i<=b;++i)
#define pb push_back
typedef long long LL;
inline int gi() {
int x=0,f=1;
char ch=getchar();
while(!isdigit(ch)) {
if(ch=='-') f=-1;
ch=getchar();
}
while(isdigit(ch)) {
x=(x<<3)+(x<<1)+ch-48;
ch=getchar();
}
return x*f;
}
template<typename T>inline bool Max(T &a,T b) {
return a<b?a=b,1:0;
}
template<typename T>inline bool Min(T &a,T b) {
return b<a?a=b,1:0;
}
const int N=2e5 + 7;
int n,Q;
LL ans[N];
struct querys{
int id,p,c;
querys(){}querys(int id,int p,int c):id(id),p(p),c(c){}
};
vector<int>G[N];
vector<querys>q[N];
struct BIT {
LL t1[N],t2[N];
int lowbit(int x) {
return x&-x;
}
void m1(int x,int y){for(int i=x;i<=n;i+=lowbit(i)) t1[i]+=y;}
void m2(int x,int y){for(int i=x;i<=n;i+=lowbit(i)) t2[i]+=y;}
pair<LL,int> query(int x){
LL r1=0;int r2=0;
for(int i=x; i; i-=lowbit(i)) r1+=t1[i],r2+=t2[i];
return make_pair(r1,r2);
}
void upd(int l,int r,int v) {
if(l>r) return;
m1(l,v),m1(r+1,-v);
m2(l,1),m2(r+1,-1);
}
} A,B;
int main(){
n=gi(),Q=gi();
rep(i,1,n) {
int c=gi();
G[c].pb(i);
} rep(i,1,Q) {
int p=gi(),l=gi(),r=gi();
q[l-1].pb(querys(i,p,-1));
q[r].pb(querys(i,p,1));
}
rep(i,1,n) {
for(int j=0; j<G[i].size(); ++j) {
if(!j)
B.upd(1,G[i][j]-1,G[i][j]);
if(j==(int)G[i].size()-1)
A.upd(G[i][j],n,G[i][j]);
else{
int mid=(G[i][j]+G[i][j+1])/2;
A.upd(G[i][j],mid,G[i][j]);
B.upd(mid+1,G[i][j+1]-1,G[i][j+1]);
}
}
for(auto v:q[i]) {
pair<LL,int> ra=A.query(v.p),rb=B.query(v.p);
ans[v.id]+=v.c*(1ll*ra.second*v.p-ra.first);
ans[v.id]+=v.c*(rb.first-1ll*rb.second*v.p);
}
}
rep(i,1,Q) printf("%lld\n",ans[i]);
return 0;
}

LOJ.#6468. 魔法[差分+树状数组]的更多相关文章

  1. 差分+树状数组【p4868】Preprefix sum

    Description 前缀和(prefix sum)\(S_i=\sum_{k=1}^i a_i\). 前前缀和(preprefix sum) 则把\(S_i\)作为原序列再进行前缀和.记再次求得前 ...

  2. 差分+树状数组 线段树【P2357】 守墓人

    题目描述-->p2357 守墓人 敲了一遍线段树,水过. 树状数组分析 主要思路: 差分 简单介绍一下差分(详细概念太麻烦,看下面. 给定一个数组 7 8 6 5 1 8 18 20 35 // ...

  3. gym102220H 差分+树状数组(区间修改和输出)

    这题目很有意思,让我学会了树状数组的差分,更加深刻理解了树状数组 树状数组的差分写法 void add(int x,int k) { for (int i = x;i <= n;i += low ...

  4. 洛谷P3246 [HNOI2016]序列(离线 差分 树状数组)

    题意 题目链接 Sol 好像搞出了一个和题解不一样的做法(然而我考场上没写出来还是爆零0) 一个很显然的思路是考虑每个最小值的贡献. 预处理出每个数左边第一个比他小的数,右边第一个比他大的数. 那么\ ...

  5. ZZNU 2098 Drink coffee(差分+树状数组)

    题目链接:http://acm.hi-54.com/problem.php?pid=2098 2098 : Drink coffee 时间限制:1 Sec 内存限制:256 MiB 提交:32 答案正 ...

  6. BZOJ3881 Coci2015Divljak(AC自动机+树上差分+树状数组)

    建出AC自动机及其fail树,每次给新加入的串在AC自动机上经过的点染色,问题即转化为子树颜色数.显然可以用dfs序转成序列问题树状数组套权值线段树解决,显然过不掉.事实上直接树上差分,按dfs序排序 ...

  7. P5057 [CQOI2006]简单题 前缀异或差分/树状数组

    好思路,好思路... 思路:前缀异或差分 提交:1次 题解:区间修改,单点查询,树状数组,如思路$qwq$ #include<cstdio> #include<iostream> ...

  8. P3250 [HNOI2016] 网络 (树剖+堆/整体二分+树上差分+树状数组)

    解法1: 本题有插入路径和删除路径,在每个节点维护插入堆和删除堆,查询时两者top一样则一直弹出.如果每个节点维护的是经过他的路径,显然有些不好处理,正难则反,每个点维护不经过他的路径,那么x节点出了 ...

  9. luogu3250 网络 (整体二分+树上差分+树状数组)

    首先整体二分,问题变成是否存在经过一个点的满足条件的路径 那么我对于每个路径(a,b,lca),在树状数组的dfn[a]++,dfn[b]++,dfn[lca]--,dfn[fa[lca]--] 然后 ...

随机推荐

  1. 看jQuery的这几天

    现在在做SPA时,有很多非常好用而且流行的前端框架,比如Vue,React,Angular等,jQuery似乎要逐渐退出前端的舞台了.不得不说,'write less,do more' 这句话吸引了我 ...

  2. 文科妹学 GitHub 简易教程

      #什么是 Github ?必须要放这张图了!!!<img src="https://pic4.zhimg.com/7c9d3403bf922b1663f56975869c829b_ ...

  3. python新生类和经典类简单说明

    经典类: #!/usr/bin/env python #*-* coding:utf-8 *-* class A(): def __init__(self): print 'my name is GF ...

  4. SQL删除多列语句

    最近在写SQL过程中发现需要对一张表结构作调整(此处是SQL Server),其中需要删除多列,由于之前都是一条SQL语句删除一列,于是猜想是否可以一条语句同时删除多列,如果可以,怎么写法? 第一次猜 ...

  5. __MySQL 5.7 Replication 相关新功能说明

      背景: MySQL5.7在主从复制上面相对之前版本多了一些新特性,包括多源复制.基于组提交的并行复制.在线修改Replication Filter.GTID增强.半同步复制增强等.因为都是和复制相 ...

  6. Sql Server2008R2下载地址

    ed2k://%7Cfile%7Ccn_sql_server_2008_r2_enterprise_x86_x64_ia64_dvd_522233.iso%7C4662884352%7C1DB0252 ...

  7. 再谈全局网HBase八大应用场景

    摘要: HBase可以说是一个数据库,也可以说是一个存储.拥有双重属性的HBase天生就具备广阔的应用场景.在2.0中,引入了OffHeap降低了延迟,可以满足在线的需求.引入MOB,可以存储10M左 ...

  8. Tidb缩减tikv机器

    生产环境下,如何缩减机器? 1.首先是检查出来那个tikv节点需要缩减 " -d store { ", "stores": [ { "store&qu ...

  9. MongoDB基础之 用户和数据库基于角色的访问控制

    mongod 关键字参数:--auth 默认值是不需要验证,即 --noauth,该参数启用用户访问权限控制:当mongod 使用该参数启动时,MongoDB会验证客户端连接的账户和密码,以确定其是否 ...

  10. [BZOJ 1135][POI2009]Lyz

    [BZOJ 1135][POI2009]Lyz 题意 初始时滑冰俱乐部有 \(1\) 到 \(n\) 号的溜冰鞋各 \(k\) 双.已知 \(x\) 号脚的人可以穿 \(x\) 到 \(x+d\) 的 ...