为你的机器学习模型创建API服务
1. 什么是API
当调包侠们训练好一个模型后,下一步要做的就是与业务开发组同学们进行代码对接,以便这些‘AI大脑’们可以顺利的被使用。然而往往要面临不同编程语言的挑战,例如很常见的是调包侠们用Python训练模型,开发同学用Java写业务代码,这时候,Api就作为一种解决方案被使用。
简单地说,API可以看作是顾客与商家之间的联系方式。如果顾客以预先定义的格式提供输入信息,则商家将获得顾客的输入信息并向其提供结果。
从本质上讲,API非常类似于web应用程序,但它没有提供一个样式良好的HTML页面,而是倾向于以标准数据交换格式返回数据,比如JSON、XML等。
接下来让我们看看如何将机器学习模型(在Python中开发的)封装为一个API。
首先需要明白什么是Web服务?Web服务是API的一种形式,只是它假定API驻留在服务器上,并且可以使用。Web API、Web服务——这些术语通常可以互换使用。
Flask——Python中的Web服务框架。它不是Python中唯一的一个Web框架,其它的例如Django、Falcon、Hug等。Flask框架带有一个内置的轻量级Web服务器,它需要最少的配置,因此在本文中将使用Flask框架来开发我们的模型API。
2. 创建一个简单模型
以一个kaggle经典的比赛项目:泰坦尼克号生还者预测为例,训练一个简单的模型。
以下是整个机器学习模型的API代码目录树:

首先,我们需要导入训练集并选择特征。因为本文主要是介绍机器学习模型API的编写,所以模型训练过程并不做为重点内容,因此我们只选择其中的'Age', 'Sex', 'Embarked', 'Survived' 这四个特征来构造训练集。
import pandas as pd # 导入训练集并选择特征
url = "http://s3.amazonaws.com/assets.datacamp.com/course/Kaggle/train.csv"
df = pd.read_csv(url)
include = ['Age', 'Sex', 'Embarked', 'Survived']
df_ = df[include]
然后,是一个简单的数据处理过程。
这里主要是对类别型特征进行One-hot编码,对连续型特征进行空缺值填充。
categoricals = []
for col, col_type in df_.dtypes.iteritems():
if col_type == 'O':
categoricals.append(col)
else:
df_[col].fillna(0, inplace=True) df_ohe = pd.get_dummies(df_, columns=categoricals, dummy_na=True)
最后,是模型的训练以及持久化保存。
模型采用的是逻辑回归,使用sklearn.externals.joblib将模型保存为序列化文件.pkl。需要注意的是,如果传入的请求不包含所有可能的category变量值,那么在预测时,get_dummies()生成的dataframe的列数比训练得到分类器的列数少,这会导致运行报错发生。所以在模型训练期间还需要持久化训练集One-hot后的列名列表。
from sklearn.linear_model import LogisticRegression
from sklearn.externals import joblib dependent_variable = 'Survived'
x = df_ohe[df_ohe.columns.difference([dependent_variable])]
y = df_ohe[dependent_variable]
lr = LogisticRegression()
lr.fit(x, y) # 保存模型
joblib.dump(lr, 'model.pkl')
print("Model dumped!") # 把训练集中的列名保存为pkl
model_columns = list(x.columns)
joblib.dump(model_columns, 'model_columns.pkl')
print("Models columns dumped!")
到此,我们的model.py的代码部分构造完毕。
3. 基于Flask框架创建API服务
使用Flask部署模型服务,需要写一个函数predict(),并完成以下两件事:
- 当应用程序启动时,将已持久化的模型加载到内存中;
- 创建一个API站点,该站点接受输入变量的请求后,将输入转换为适当的格式,并返回预测。
更具体地说,需要API的输入如下(一个由JSON组成的列表):
[
{"Age": 85, "Sex": "male", "Embarked": "S"},
{"Age": 24, "Sex": '"female"', "Embarked": "C"},
{"Age": 3, "Sex": "male", "Embarked": "C"},
{"Age": 21, "Sex": "male", "Embarked": "S"}
]
而模型API的输出如下:
{"prediction": [0, 1, 1, 0]}
import traceback
import sys import pandas as pd
from flask import request
from flask import Flask
from flask import jsonify app = Flask(__name__) @app.route('/predict', methods=['POST']) # Your API endpoint URL would consist /predict
def predict():
if lr:
try:
json_ = request.json
query = pd.get_dummies(pd.DataFrame(json_))
query = query.reindex(columns=model_columns, fill_value=0)
prediction = list(lr.predict(query))
return jsonify({'prediction': str(prediction)})
except:
return jsonify({'trace': traceback.format_exc()})
else:
print('Train the model first')
return 'No model here to use'
我们已经在“/predict”API中包含了所有必需的元素,现在只需编写主类即可。
from sklearn.externals import joblib
if __name__ == '__main__':
try:
port = int(sys.argv[1])
except:
port = 8000
lr = joblib.load('model.pkl') # Load "model.pkl"
print('Model loaded')
model_columns = joblib.load('model_columns.pkl') # Load "model_columns.pkl"
print('Model columns loaded')
app.run(host='192.168.100.162', port=port, debug=True)
到此,我们的机器学习模型API已经创建完毕,flask_api.py的代码部分也已构造完毕。但在进一步深入之前,让我们回顾一下之前的所有操作:
- 加载了泰坦尼克数据集并选择了四个特征。
- 进行了必要的数据预处理。
- 训练了一个逻辑回归分类器模型并将其序列化。
- 持久化训练集中的列名的列表。
- 使用Flask编写了一个简单的API,该API通过接收一个由JSON组成的列表,预测一个人是否在沉船中幸存。
4. API的有效性测试
首先运行我们的模型API服务,我们通过Pycharm来启动上一小节编写完成的flask_api.py:

可以看到,在启动API服务后,模型以及列名被顺利的加载到了内存中。
之后可以通过Postman软件模拟网页请求,通过传递测试数据来观察模型API是否能正常返回预测信息。具体操作如下:

可以看到,模型API顺利的接收到了POST请求并发送预测结果。
当然,除了Postman以外,我们也可以编写Python脚本request_api.py完成API测试:
import requests
years_exp = [{"Age": 22, "Sex": "male", "Embarked": "S"},
{"Age": 22, "Sex": "female", "Embarked": "C"},
{"Age": 80, "Sex": "female", "Embarked": "C"},
{"Age": 22, "Sex": "male", "Embarked": "S"},
{"Age": 22, "Sex": "female", "Embarked": "C"},
{"Age": 80, "Sex": "female", "Embarked": "C"},
{"Age": 22, "Sex": "male", "Embarked": "S"},
{"Age": 22, "Sex": "female", "Embarked": "C"},
{"Age": 80, "Sex": "female", "Embarked": "C"},
{"Age": 22, "Sex": "male", "Embarked": "S"},
{"Age": 22, "Sex": "female", "Embarked": "C"},
{"Age": 80, "Sex": "female", "Embarked": "C"},
{"Age": 22, "Sex": "male", "Embarked": "S"},
{"Age": 22, "Sex": "female", "Embarked": "C"},
{"Age": 80, "Sex": "female", "Embarked": "C"},
]
response = requests.post(url='http://192.168.100.162:8000/predict', json=years_exp)
result = response.json()
print('model API返回结果:', result)
同样我们顺利地接收到了模型的返回结果:

这证明我们的机器学习API已经顺利开发完毕,接下来要做的就是交给业务开发组的同学来使用了。
5. 总结
本文介绍了如何从机器学习模型构建一个API。尽管这个API很简单,但描述的还算相对清晰。
此外,除了可以对模型预测部分构建API以外,也可以对训练过程构建一个API,包括通过发送超参数、发送模型类型等让客户来构建属于自己的机器学习模型。当然,这也将是我下一步要做的事情。
为你的机器学习模型创建API服务的更多相关文章
- Kubernetes入门(四)——如何在Kubernetes中部署一个可对外服务的Tensorflow机器学习模型
机器学习模型常用Docker部署,而如何对Docker部署的模型进行管理呢?工业界的解决方案是使用Kubernetes来管理.编排容器.Kubernetes的理论知识不是本文讨论的重点,这里不再赘述, ...
- 使用Flask构建机器学习模型API
1. Python环境设置和Flask基础 使用"Anaconda"创建一个虚拟环境.如果你需要在Python中创建你的工作流程,并将依赖项分离出来,或者共享环境设置," ...
- 使用ASP.NET web API创建REST服务(二)
Creating a REST service using ASP.NET Web API A service that is created based upon the architecture ...
- 使用ASP.NET web API创建REST服务(三)
本文档来源于:http://www.cnblogs.com/madyina/p/3390773.html Creating a REST service using ASP.NET Web API A ...
- ASP.NET---如何使用web api创建web服务
1 首先创建asp.net web空项目,并且创建模拟数据,我在工程下面创建了一个Models文件夹,在文件夹Nodels下面创建类Product和Repository 具体如下: [Serializ ...
- ASP.NET Core Web API + Angular 仿B站(二)后台模型创建以及数据库的初始化
前言: 本系列文章主要为对所学 Angular 框架的一次微小的实践,对 b站页面作简单的模仿. 本系列文章主要参考资料: 微软文档: https://docs.microsoft.com/zh-cn ...
- 用PMML实现机器学习模型的跨平台上线
在机器学习用于产品的时候,我们经常会遇到跨平台的问题.比如我们用Python基于一系列的机器学习库训练了一个模型,但是有时候其他的产品和项目想把这个模型集成进去,但是这些产品很多只支持某些特定的生产环 ...
- 用PMML实现python机器学习模型的跨平台上线
python信用评分卡(附代码,博主录制) https://study.163.com/course/introduction.htm?courseId=1005214003&utm_camp ...
- 如何对SAP Leonardo上的机器学习模型进行重新训练
Jerry之前的两篇文章介绍了如何通过Restful API的方式,消费SAP Leonardo上预先训练好的机器学习模型: 如何在Web应用里消费SAP Leonardo的机器学习API 部署在SA ...
随机推荐
- MySQL 性能监控4大指标——第二部分
[编者按]本文作者为 John Matson,主要介绍 mysql 性能监控应该关注的4大指标. 第一部分介绍了前两个指标:查询吞吐量与查询执行性能.本文将继续介绍另两个指标:MySQL 连接与缓冲池 ...
- python自学——文件打开
#文件的打开 新建一个文件new file.txt #方法一:f=open("yesterday","r",encoding="utf-8" ...
- 转-python异步IO-asyncio
原文连接 http://blog.chinaunix.net/uid-190176-id-4223282.html 前言 异步操作在计算机软硬件体系中是一个普遍概念,根源在于参与协作的各实体处理速度上 ...
- 【转】Linux下从TCP状态机,三次握手判断DDOS攻击
从TCP状态机判断DDOS攻击 一.TCP协议 TCP 协议是传送层的核心协议,提供了可靠面向连接的协议,分为三次握手和四次断开,在这个过程中TCP有个状态机,记录不同阶段的状态. 二. TCP握手和 ...
- OpenCV学习参考 即时贴
注意:本博文在github上日常更新(保持GitHub最新) https://github.com/SylvesterLi/MyOpenCVCode 基本安装:https://blog.csdn.ne ...
- [日常] HEOI 2019 退役记
HEOI 2019 退役记 先开坑 坐等AFO 啥时候想起来就更一点(咕咕咕) Day 0 早上打了个LCT, 打完一遍过编译一遍AC...(看来不考这玩意了) 然后进行了一些精神文明建设活动奶了一口 ...
- docker-compose.md
安装 pip python 2.7+的系统同yum先安装pip命令. # yum install -y python2-pip # pip install docker-compose 网络安装 # ...
- Github进行fork后如何与原仓库同步
https://blog.csdn.net/myuantao3286286/article/details/50477139
- stl vector、红黑树、set、multiset、map、multimap、迭代器失效、哈希表(hash_table)、hashset、hashmap、unordered_map、list
stl:即标准模板库,该库包含了诸多在计算机科学领域里所常用的基本数据结构和基本算法 六大组件: 容器.迭代器.算法.仿函数.空间配置器.迭代适配器 迭代器:迭代器(iterator)是一种抽象的设计 ...
- android 7.0拍照问题file:///storage/emulated/0/photo.jpeg exposed beyond app through ClipData.Item.getUri
Android7.0调用相机时出现新的错误: android.os.FileUriExposedException: file:///storage/emulated/0/photo.jpeg exp ...