Fire Net

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 12575    Accepted Submission(s): 7614

Problem Description

Suppose that we have a square city with straight streets. A map of a city is a square board with n rows and n columns, each representing a street or a piece of wall.

A blockhouse is a small castle that has four openings through which to shoot. The four openings are facing North, East, South, and West, respectively. There will be one machine gun shooting through each opening.

Here we assume that a bullet is so powerful that it can run across any distance and destroy a blockhouse on its way. On the other hand, a wall is so strongly built that can stop the bullets.

The goal is to place as many blockhouses in a city as possible so that no two can destroy each other. A configuration of blockhouses is legal provided that no two blockhouses are on the same horizontal row or vertical column in a map unless there is at least one wall separating them. In this problem we will consider small square cities (at most 4x4) that contain walls through which bullets cannot run through.

The following image shows five pictures of the same board. The first picture is the empty board, the second and third pictures show legal configurations, and the fourth and fifth pictures show illegal configurations. For this board, the maximum number of blockhouses in a legal configuration is 5; the second picture shows one way to do it, but there are several other ways.

Your task is to write a program that, given a description of a map, calculates the maximum number of blockhouses that can be placed in the city in a legal configuration.

 

Input

The input file contains one or more map descriptions, followed by a line containing the number 0 that signals the end of the file. Each map description begins with a line containing a positive integer n that is the size of the city; n will be at most 4. The next n lines each describe one row of the map, with a '.' indicating an open space and an uppercase 'X' indicating a wall. There are no spaces in the input file. 
 

Output

For each test case, output one line containing the maximum number of blockhouses that can be placed in the city in a legal configuration.
 

Sample Input

4
.X..
....
XX..
....
2
XX
.X
3
.X.
X.X
.X.
3
...
.XX
.XX
4
....
....
....
....
0
 

Sample Output

5
1
5
2
4
 

Source

 
X集合表示棋盘一行被墙分隔的点,Y表示棋盘一列被墙分隔的点,若(i,j)位置有棋子,则i在X集合中对应的点与j在Y集合中对应的点之间有一条连线,问题转换为二分图最大匹配。
 
 //2017-08-21
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; const int N = ;
int head[N], tot;
struct Edge{
int to, next;
}edge[N<<]; void init(){
tot = ;
memset(head, -, sizeof(head));
} void add_edge(int u, int v){
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot++; edge[tot].to = u;
edge[tot].next = head[v];
head[v] = tot++;
} int n;
string G[N];
int matching[N];
int check[N]; bool dfs(int u){
for(int i = head[u]; i != -; i = edge[i].next){
int v = edge[i].to;
if(!check[v]){//要求不在交替路
check[v] = ;//放入交替路
if(matching[v] == - || dfs(matching[v])){
//如果是未匹配点,说明交替路为增广路,则交换路径,并返回成功
matching[u] = v;
matching[v] = u;
return true;
}
}
}
return false;//不存在增广路
} //hungarian: 二分图最大匹配匈牙利算法
//input: null
//output: ans 最大匹配数
int hungarian(){
int ans = ;
memset(matching, -, sizeof(matching));
for(int u = ; u < n*n; u++){
if(matching[u] == -){
memset(check, , sizeof(check));
if(dfs(u))
ans++;
}
}
return ans;
} int main()
{
//freopen("inputA.txt", "r", stdin);
while(cin>>n && n){
init();
for(int i = ; i < n; i++)
cin>>G[i];
int id = , row_id[][], col_id[][];
memset(row_id, -, sizeof(row_id));
memset(col_id, -, sizeof(col_id));
for(int i = ; i < n; i++){
for(int j = ; j < n; j++){
if(G[i][j] == '.')row_id[i][j] = id;
else if(G[i][j] == 'X')id++;
}
id++;
}
id = n*n;
for(int j = ; j < n; j++){
for(int i = ; i < n; i++){
if(G[i][j] == '.')col_id[i][j] = id;
else if(G[i][j] == 'X')id++;
}
id++;
}
for(int i = ; i < n; i++)
for(int j = ; j < n; j++)
if(row_id[i][j] != - && col_id[i][j] != -)
add_edge(row_id[i][j], col_id[i][j]);
cout<<hungarian()<<endl;
} return ;
}

HDU1045(KB10-A 二分图最大匹配)的更多相关文章

  1. HDU1045 Fire Net —— 二分图最大匹配

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1045 Fire Net Time Limit: 2000/1000 MS (Java/Others)  ...

  2. POJ 2226二分图最大匹配

    匈牙利算法是由匈牙利数学家Edmonds于1965年提出,因而得名.匈牙利算法是基于Hall定理中充分性证明的思想,它是二部图匹配最常见的算法,该算法的核心就是寻找增广路径,它是一种用增广路径求二分图 ...

  3. POJ2239 Selecting Courses(二分图最大匹配)

    题目链接 N节课,每节课在一个星期中的某一节,求最多能选几节课 好吧,想了半天没想出来,最后看了题解是二分图最大匹配,好弱 建图: 每节课 与 时间有一条边 #include <iostream ...

  4. poj 2239 二分图最大匹配,基础题

    1.poj 2239   Selecting Courses   二分图最大匹配问题 2.总结:看到一个题解,直接用三维数组做的,很巧妙,很暴力.. 题意:N种课,给出时间,每种课在星期几的第几节课上 ...

  5. UESTC 919 SOUND OF DESTINY --二分图最大匹配+匈牙利算法

    二分图最大匹配的匈牙利算法模板题. 由题目易知,需求二分图的最大匹配数,采取匈牙利算法,并采用邻接表来存储边,用邻接矩阵会超时,因为邻接表复杂度O(nm),而邻接矩阵最坏情况下复杂度可达O(n^3). ...

  6. 二分图最大匹配的K&#246;nig定理及其证明

     二分图最大匹配的K?nig定理及其证明 本文将是这一系列里最短的一篇,因为我只打算把K?nig定理证了,其它的废话一概没有.    以下五个问题我可能会在以后的文章里说,如果你现在很想知道的话,网上 ...

  7. POJ3057 Evacuation(二分图最大匹配)

    人作X部:把门按时间拆点,作Y部:如果某人能在某个时间到达某门则连边.就是个二分图最大匹配. 时间可以二分枚举,或者直接从1枚举时间然后加新边在原来的基础上进行增广. 谨记:时间是个不可忽视的维度. ...

  8. ZOJ1654 Place the Robots(二分图最大匹配)

    最大匹配也叫最大边独立集,就是无向图中能取出两两不相邻的边的最大集合. 二分图最大匹配可以用最大流来解. 如果题目没有墙,那就是一道经典的二分图最大匹配问题: 把地图上的行和列分别作为点的X部和Y部, ...

  9. HDU:过山车(二分图最大匹配)

    http://acm.hdu.edu.cn/showproblem.php?pid=2063 题意:有m个男,n个女,和 k 条边,求有多少对男女可以搭配. 思路:裸的二分图最大匹配,匈牙利算法. 枚 ...

随机推荐

  1. jzoj4223

    考慮這樣一種暴力:將所有<=x的邊按照類似最小生成樹的方式加入答案,然後用下面的方法統計答案: 1.首先加入一條邊 2.看這條邊是否將會合成聯通塊,如果會,那麼加進這條邊,記這條邊一端聯通塊大小 ...

  2. Docker - 基础讲义

    Docker Docker - 官网 Docker - Hub GitHub - Docker dockerinfo Docker中文社区 Docker入门教程 Docker从入门到实践 虚拟化技术 ...

  3. tcpdump命令抓包参数

    在 Linux 命令行中使用 tcpdump 抓包 通过实例学习tcpdump命令 聊聊 tcpdump 与 Wireshark 抓包分析 tcpdump常用参数 -n 显示IP地址和端口号 -v 显 ...

  4. 1-1 Vue的介绍

    简单介绍Vue Vue (读音 /vjuː/,类似于 view) 是一套用于构建用户界面的渐进式框架.与其它大型框架不同的是,Vue 被设计为可以自底向上逐层应用.Vue 的核心库只关注视图层,不仅易 ...

  5. node.js中的回调

    同步和阻塞:这两个术语可以互换使用,指的是代码的执行会在函数返回之前停止.如果某个操作阻塞,那么脚本就无法继续,这意味着必须等待. 异步和非阻塞:这两个术语可以互换使用,指的是基于回调的.允许脚本并行 ...

  6. numpy中int类型与python中的int

    [code] import numpy as np nparr = np.array([[1 ,2, 3, 4]]) np_int32 = nparr[0][0] # np_int=1 py_int ...

  7. iconfont 批量把图标加入购物车的方法

    在浏览器中按 f12 打开[开发人员工具],找到[console(控制台)],输入以下代码,再按回车,稍等片刻即可把全部图标加入购物车 var ll = document.getElementsByC ...

  8. 前端组件化Polymer入门教程(3)——快速入门

    本系列主要翻译官方的教程,因为国内目前这方面的资料太少了,但也不一定和官网的一样,反正就是自己想到哪就写到哪. 如果我没有说明,默认情况下index.html始终包含这段代码,后面将不会再贴上来. & ...

  9. WebMagic实现分布式抓取以及断点抓取

    访问我的博客 前言 从去年到今年,笔者主要负责的是与合作方的内容对接,新增的合作商不是很多的情况下,在我自从去年引入了 WebMagic 这个爬虫框架之后,基本很少需要去关注维护爬虫,做的最多的是新接 ...

  10. Solidity数组

    一.固定长度的数组(Arrays) 1.固定长度类型数组的声明 pragma solidity ^0.4.4; contract C { // 数组的长度为5,数组里面的存储的值的类型为uint类型 ...