OPENCV SVM介绍和自带例子
依据机器学习算法如何学习数据可分为3类:
有监督学习:从有标签的数据学习,得到模型参数,对测试数据正确分类;
无监督学习:没有标签,计算机自己寻找输入数据可能的模型;
强化学习(reinforcement learning):计算机与动态环境交互,学习错误反馈达到更优的目的。
依据机器学习期望结果来分类:
分类:输入被分为N个类别的一种;
回归:输出是连续值;如依据房子的大小,时间,位置来预测房子的价格;
聚类:使用无监督学习将输入聚为N类;
密度估计(density estimation):找到输入可能的分布;
以OpenCV的SVM为例:
支持向量机较其他传统机器学习算法的优点:
1、小样本,并不是说样本的绝对数量少(实际上,对任何算法来说,更多的样本几乎总是能带来更好的效果),而是说与问题的复杂度比起来,SVM算法要求的样本数是相对比较少的。SVM解决问题的时候,和样本的维数是无关的(甚至样本是上万维的都可以,这使得SVM很适合用来解决文本分类的问题,当然,有这样的能力也因为引入了核函数)。
2、结构风险最小。(对问题真实模型的逼近与问题真实解之间的误差,就叫做风险,更严格的说,误差的累积叫做风险)。
3、非线性,是指SVM擅长应付样本数据线性不可分的情况,主要通过松弛变量(也有人叫惩罚变量)和核函数技术来实现,这一部分是SVM的精髓。
SVM的精髓之一核函数:OpenCV提供了以下几种
线性核函数:SVM::LINEAR,线性内核,没有高维空间映射,速度快;
多项式核函数:SVM::POLY,gamma>0,coef(),degree;
径向基核函数: SVM::RBF,比较好的选择,gamma>0;
SIGMOD核函数:这个核让人想起神经网络和深度学习。。gamma,coef();
上面核中记录了SVM使用的参数;见SVMParams();
C++: CvSVMParams::CvSVMParams(int svm_type, int kernel_type, double degree, double gamma, double coef0, double Cvalue, double nu, double p, CvMat* class_weights, CvTermCriteria term_crit)
svm_type:SVM类型:
1、CvSVM::C_SVC : C类支撑向量分类机。 n类分组 (n≥2),容许用异常值处罚因子C进行不完全分类。
2、CvSVM::NU_SVC : 类支撑向量分类机。n类似然不完全分类的分类器。参数为gamma代替C。
3、CvSVM::ONE_CLASS : 单分类器,所有的练习数据提取自同一个类里,然后SVM建树了一个分界线以分别该类在特点空间中所占区域和其它类在特点空间中所占区域。
4、CvSVM::EPS_SVR : 用于回归。练习集中的特征向量和拟合出来的超平面的间隔须要小于p。异常值处罚因子C被采取。
5、CvSVM::NU_SVR : 回归机,gamma代替p
kernel_type:即上面所说的核函数类型;仔细看可以发现这两个参数类型都是int,所以除了填这些宏一样的名称外也可以直接填1,2,3.。。。
degree,gamma,coef0,都是特定核函数使用的参数,上面有总结;
Cvalue:SVM类型(C_SVC/ EPS_SVR/ NU_SVR)的参数C。
nu:SVM类型(NU_SVC/ ONE_CLASS/ NU_SVR)的参数 gamma;
p:SVM类型(EPS_SVR)的参数
class_weights:C_SVC中的可选权重,赋给指定的类,乘以C后变成 class_weights*C;
term_crit:SVM的迭代终止条件,可以指定的公差和最大迭代次数。
不设置时使用默认初始值初始化各参数。
SVM的训练函数有两个,训练的好坏直接影响学习结果,非常重要。
C++: bool CvSVM::train(const Mat& trainData, const Mat& responses, const Mat& varIdx=Mat(), const Mat& sampleIdx=Mat(), CvSVMParams params=CvSVMParams() )
C++: bool CvSVM::train_auto();
推荐第二个,因为能帮你优化参数啊!!!除非你自认调参能力出众可选第一个!
训练后就是预测了,SVM有以下三种形式:
C++: float CvSVM::predict(const Mat& sample, bool returnDFVal=false ) const
C++: float CvSVM::predict(const CvMat* sample, bool returnDFVal=false ) const
C++: float CvSVM::predict(const CvMat* samples, CvMat* results) const
sample: 须要预测的输入样本;samples: 须要预测的输入样本们,多个;
returnDFVal: 指定返回值类型。若值是true,则是一个2类分类问题;
results: 响应的样本输出猜测的响应;分类中返回的是标签类别号;
来看一下OPENCV文档的例子:
void TestSVM1()
{ int width = , height = ;
Mat image = Mat::zeros(height, width, CV_8UC3); // set up training data
float labels[] = { 1.0, 1.0, -1.0, -1.0 };
Mat labelsMat(, , CV_32FC1, labels); float trainingData[][] = { { , }, { , }, { , }, { , } };
Mat trainingDataMat(, , CV_32FC1, trainingData); // set up SVM's parameters
CvSVMParams params;
params.svm_type = CvSVM::C_SVC;
params.kernel_type = CvSVM::LINEAR;
params.term_crit = cvTermCriteria(CV_TERMCRIT_ITER, , 1e-); // train the svm
CvSVM SVM;
SVM.train(trainingDataMat, labelsMat, Mat(), Mat(), params); Vec3b green(, , ), blue(, , ); // show the decision region given by the SVM
for (int i = ; i < image.rows; ++i)
{
for (int j = ; j < image.cols; ++j)
{
Mat sampleMat = (Mat_<float>(, ) << i, j); // predict 函数使用训练好的SVM模型对一个输入的样本进行分类
float response = SVM.predict(sampleMat); if (response == )
{
// 注意这里是(j,i),不是(i,j)
image.at<Vec3b>(j, i) = green;
}
else
{
// 同上
image.at<Vec3b>(j, i) = blue;
}
}
} int thickness = -;
int lineType = ; circle(image, Point(, ), , Scalar(, , ), thickness, lineType);
circle(image, Point(, ), , Scalar(, , ), thickness, lineType);
circle(image, Point(, ), , Scalar(, , ), thickness, lineType);
circle(image, Point(, ), , Scalar(, , ), thickness, lineType); // show support vectors
thickness = ;
lineType = ; // 获得当前的支持向量的个数
int c = SVM.get_support_vector_count(); for (int i = ; i < c; ++i)
{
const float* v = SVM.get_support_vector(i);
circle(image, Point((int)v[], (int)v[]), , Scalar(, , ), thickness, lineType);
} //imwrite("result.png", image); // save the image imshow("SVM Simple Example", image); // show it to the user
waitKey();
return;
}
看代码的label可以知道是一个二分类问题,输入为四个点,核函数也是线性核。
结果:
四个点每个类才两个点总觉得不够看啊,笔者增加了点数还是二分类,分界面看上去好多了。
每个类6点,看上去分类更有规律了。
下次将介绍从文件训练模型,使用更复杂的SVM模型~~
OPENCV SVM介绍和自带例子的更多相关文章
- OpenCV支持向量机(SVM)介绍
支持向量机(SVM)介绍 目标 本文档尝试解答如下问题: 如何使用OpenCV函数 CvSVM::train 训练一个SVM分类器, 以及用 CvSVM::predict 测试训练结果. 什么是支持向 ...
- opencv SVM多分类 人脸识别
上一篇介绍了OPENCV中SVM的简单使用,以及自带的一个二分类问题. 例子中的标签是程序手动写的,输入也是手动加的二维坐标点. 对于复杂问题就必须使用数据集中的图片进行训练,标签使用TXT文件或程序 ...
- 数据挖掘入门系列教程(八点五)之SVM介绍以及从零开始推导公式
目录 SVM介绍 线性分类 间隔 最大间隔分类器 拉格朗日乘子法(Lagrange multipliers) 拉格朗日乘子法推导 KKT条件(Karush-Kuhn-Tucker Conditions ...
- OpenCV框架介绍
OpenCV框架介绍 概述 OpenCV是一个开放源代码的计算机视觉应用平台,由英特尔公司下属研发中心俄罗斯团队发起该项目,开源BSD证书,OpenCV的目标是实现实时计算机视觉,,是一个跨平台的计算 ...
- cocos2d-x入门学习笔记,主要介绍cocos2d-x的基本结构,并且介绍引擎自带的示例
cocos2d-x 3.0 制作横版格斗游戏 http://philon.cn/post/cocos2d-x-3.0-zhi-zuo-heng-ban-ge-dou-you-xi http://blo ...
- 学习OpenCV——SVM
学习OpenCV——SVM 学习SVM,首先通过http://zh.wikipedia.org/wiki/SVM, 再通过博客http://blog.csdn.net/yang_xian521/art ...
- IPC介绍——10个ipcs例子
IPC介绍——10个ipcs例子 semaphorearrays2010performancesystemaccess ipcs是一个uinx/linux的命令.用于报告系统的消息队列.信号量.共享内 ...
- 083 01 Android 零基础入门 02 Java面向对象 01 Java面向对象基础 02 构造方法介绍 02 构造方法-带参构造方法
083 01 Android 零基础入门 02 Java面向对象 01 Java面向对象基础 02 构造方法介绍 02 构造方法-带参构造方法 本文知识点:构造方法-带参构造方法 说明:因为时间紧张, ...
- MYSQL的锁介绍,以及死锁发生情况-带例子
mysql锁能在并发情况下的mysql进行更好的优化 MySQL有三种锁的级别:页级.表级.行级,这3种锁的特性可大致归纳如下: 表级锁:开销小,加锁快:不会出现死锁:锁定粒度大,发生锁冲突的概率最高 ...
随机推荐
- 阿里云视频直播PHP-SDK接入教程
阿里云视频直播PHP-SDK接入教程 阿里云 视频直播 配置 及 PHP-SDK 接入教程 准备工作 域名管理 配置鉴权 地址生成器及DEMO演 ...
- Mysql的myqldump命令使用方法(备份与还原)
这里的备份与还原,是指表结构数据,和表里面的具体数据(一条一条的记录)同时备份和还原.因此mysqldump,mysql这两命令很强大. 1.备份(即导出)mysqldump -u root -p e ...
- 进程和线程(4)-进程 vs. 线程
进程 vs. 线程 我们介绍了多进程和多线程,这是实现多任务最常用的两种方式.现在,我们来讨论一下这两种方式的优缺点. 首先,要实现多任务,通常我们会设计Master-Worker模式,Master负 ...
- 解题:CF960G Bandit Blues & FJOI 2016 建筑师
题面1 题面2 两个题推导是一样的,具体实现不一样,所以写一起了,以FJOI 2016 建筑师 的题面为标准 前后在组合意义下一样,现在只考虑前面,可以发现看到的这a个建筑将这一段划分成了a-1个区间 ...
- 【leetcode】 Jump Game
Given an array of non-negative integers, you are initially positioned at the first index of the arra ...
- 如何查去别人的ip,进行定位
- Hadoop基础-MapReduce的工作原理第二弹
Hadoop基础-MapReduce的工作原理第二弹 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.Split(切片) 1>.MapReduce处理的单位(切片) 想必 ...
- 文件通过svn updata更新不到,并且svn st显示被删除的解决办法
不知道什么原因导致某些文件丢失,svn updata更新后仍然没有找到,采用svn st 显示这些文件被删除,svn reslove 也解决不了,头疼了很久,最近突然解决了,具体步骤如下(已经过验证) ...
- C#_界面程序_数码游戏
using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; usin ...
- js调试系列: 断点与动态调试[基础篇]
js调试系列目录: - 额,我说的不是张敬轩的 断点 这首歌,是调试用到的断点,进入正题吧. 昨天留的课后练习 1. 分析 votePost 函数是如何实现 推荐 的.其实我们已经看到了源码,只要读下 ...