Shortest Path

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 627    Accepted Submission(s): 204

Problem Description
There is a path graph G=(V,E) with n vertices. Vertices are numbered from 1 to n and there is an edge with unit length between i and i+1 (1≤i<n). To make the graph more interesting, someone adds three more edges to the graph. The length of each new edge is 1.

You are given the graph and several queries about the shortest path between some pairs of vertices.

 
Input
There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:

The first line contains two integer n and m (1≤n,m≤105) -- the number of vertices and the number of queries. The next line contains 6 integers a1,b1,a2,b2,a3,b3 (1≤a1,a2,a3,b1,b2,b3≤n), separated by a space, denoting the new added three edges are (a1,b1), (a2,b2), (a3,b3).

In the next m lines, each contains two integers si and ti (1≤si,ti≤n), denoting a query.

The sum of values of m in all test cases doesn't exceed 106.

 
Output
For each test cases, output an integer S=(∑i=1mi⋅zi) mod (109+7), where zi is the answer for i-th query.
 
Sample Input
1 10 2 2 4 5 7 8 10 1 5 3 1
 
Sample Output
7
 
Source

如果想做出这道题, 重要的是思路和知识的熟练掌握, Floyd模板并不难, 但怎么将它巧妙的用到了题中是值得思考的问题,还是自己掌握的不熟练, 一看别人的就懂, 但让自己写却毫无头绪

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <map>
#include <cmath>
#include <iostream> using namespace std; #define MOD (1000000000+7) int main()
{
int T;
scanf("%d", &T); while(T--)
{
int n, m, i, j, k, l, r, u, v, a[10];
int dp[10][10];
long long res=0, len; scanf("%d%d", &n, &m); for(i=1; i<=6; i++)
scanf("%d", &a[i]); for(i=1; i<=6; i++) ///相当于对dp初始化
for(j=1; j<=6; j++)
dp[i][j] = abs(a[i]-a[j]); if(a[1]!=a[2]) dp[1][2] = dp[2][1] = 1; ///如果两点不相等的话就让两点的距离为1
if(a[3]!=a[4]) dp[3][4] = dp[4][3] = 1;
if(a[5]!=a[6]) dp[5][6] = dp[6][5] = 1; for(k=1; k<=6; k++)
for(i=1; i<=6; i++)
for(j=1; j<=6; j++)
dp[i][j] = min(dp[i][j], dp[i][k]+dp[k][j]); for(i=1; i<=m; i++)
{
scanf("%d%d", &l, &r);
len = abs(l-r); for(u=1; u<=6; u++)
for(v=1; v<=6; v++)
len = min(len, (long long)(abs(a[u]-l)+dp[u][v]+abs(a[v]-r))); res = (res+len*i)%MOD;
} printf("%I64d\n", res); }
return 0;
}

74(2B)Shortest Path (hdu 5636) (Floyd)的更多相关文章

  1. HDU 5636 关键点的 floyd 最短路问题

    Shortest Path Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)T ...

  2. JAVA之单源最短路径(Single Source Shortest Path,SSSP问题)dijkstra算法求解

    题目简介:给定一个带权有向图,再给定图中一个顶点(源点),求该点到其他所有点的最短距离,称为单源最短路径问题. 如下图,求点1到其他各点的最短距离 准备工作:以下为该题所需要用到的数据 int N; ...

  3. 单源最短距离 Single Source Shortest Path

    单源最短距离_示例程序_图模型_用户指南_MaxCompute-阿里云 https://help.aliyun.com/document_detail/27907.html 单源最短距离 更新时间:2 ...

  4. HDU 4725 The Shortest Path in Nya Graph (最短路 )

    This is a very easy problem, your task is just calculate el camino mas corto en un grafico, and just ...

  5. HDU 4725 The Shortest Path in Nya Graph(构图)

    The Shortest Path in Nya Graph Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ...

  6. HDU 4725 The Shortest Path in Nya Graph (最短路)

    The Shortest Path in Nya Graph Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ...

  7. HDU 4725 The Shortest Path in Nya Graph(最短路径)(2013 ACM/ICPC Asia Regional Online ―― Warmup2)

    Description This is a very easy problem, your task is just calculate el camino mas corto en un grafi ...

  8. hdu 4725 The Shortest Path in Nya Graph (最短路+建图)

    The Shortest Path in Nya Graph Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ...

  9. hdu 3631 Shortest Path(Floyd)

    题目链接:pid=3631" style="font-size:18px">http://acm.hdu.edu.cn/showproblem.php?pid=36 ...

随机推荐

  1. node.js下载安装

    1.下载node.js在node中文网站,官方网站下载太慢 2.接着让我们点击下载链接,页面上呈现出你所需要下载的安装包,我们这里选择windows x64的安装包进行下载 3.安装node.js,一 ...

  2. ftp中ftpClient类的API

    org.apache.commons.NET.ftp  Class FTPClient类FTPClient java.lang.Object java.lang.Object继承 org.apache ...

  3. andorid 进度条和图片的透明度

    layout.xml <?xml version="1.0" encoding="utf-8"?> <LinearLayout xmlns:a ...

  4. RabbitMQ消息队列(一):详细介绍

    1. 历史 RabbitMQ是一个由erlang开发的AMQP(Advanced Message Queue )的开源实现.AMQP 的出现其实也是应了广大人民群众的需求,虽然在同步消息通讯的世界里有 ...

  5. Kali Linux 网络扫描秘籍

    第三章 端口扫描(二) 作者:Justin Hutchens 译者:飞龙 协议:CC BY-NC-SA 4.0 3.6 Scapy 隐秘扫描 执行 TCP 端口扫描的一种方式就是执行一部分.目标端口上 ...

  6. POJ3621或洛谷2868 [USACO07DEC]观光奶牛Sightseeing Cows

    一道\(0/1\)分数规划+负环 POJ原题链接 洛谷原题链接 显然是\(0/1\)分数规划问题. 二分答案,设二分值为\(mid\). 然后对二分进行判断,我们建立新图,没有点权,设当前有向边为\( ...

  7. 通过 ulimit 改善系统性能

    系统性能一直是一个受关注的话题,如何通过最简单的设置来实现最有效的性能调优,如何在有限资源的条件下保证程序的运作,ulimit 是我们在处理这些问题时,经常使用的一种简单手段.ulimit 是一种 l ...

  8. [规则原则定理]规则原则定理章1CAP原则

    CAP原则又称CAP定理,指的是在一个分布式系统中,Consistency(一致性). Availability(可用性).Partition tolerance(分区容错性),三者不可兼得 分布式系 ...

  9. JS浏览器Session存取数据

    vm.indexdata.indexId = id; vm.indexdata.indexName = name; var tempIndex = JSON.stringify(vm.indexdat ...

  10. bootstrap 坑

    1.  表格内存出不来,也不报错 .. 值是对的..  原因是  table  中必须有属性   data-toggle="table" <table id="My ...