http://172.20.6.3/Problem_Show.asp?id=2042

题意:求一个次数界为n的多项式在模P并模x^m的意义下的逆元。P=7*17*2^23+1。

多项式逆元的含义以及求逆元的方法:http://blog.miskcoo.com/2015/05/polynomial-inverse

公式推导一下。主要还是NTT的使用,我NTT写错了调了半天,太zz了。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<complex>
using namespace std;
#define LL long long
const LL P=(LL)**(<<)+;
const int maxn=;
LL a[maxn]={},b[maxn]={},e[maxn]={},zz[][maxn]={};
int bel[maxn]={};
int bt,s,tot=;
LL mpow(LL x,LL k){
if(k<){x=mpow(x,P-);k=-k;}
LL z=;
while(k){
if(k&)z=(z*x)%P;
x=(x*x)%P;
k/=;
}return z;
}
inline void getit(){ for(int i=;i<s;i++)bel[i]=((bel[i>>]>>)|((i&)<<(bt-))); }
inline void ntt(LL *c,int n,int dft){
for(int i=;i<n;i++)if(bel[i]>i)swap(c[bel[i]],c[i]);
for(int step=;step<n;step<<=){
LL w=mpow(,((P-)/(step*))*dft);
for(int j=;j<n;j+=(step<<)){
LL z=;
for(int i=j;i<j+step;++i){
LL x=c[i],y=(c[i+step]*z)%P;
c[i]=(x+y)%P;
c[i+step]=((x-y)%P+P)%P;
z=(z*w)%P;
}
}
}
if(dft==-){
LL mon=mpow(n,P-);
for(int i=;i<n;i++)c[i]=(c[i]*mon)%P;
}
}
inline void dontt(LL *c,LL *d,int x,int y){
bt=;s=;int z=x+y-;
for(;s<z;++bt)s<<=;
getit();
ntt(c,s,);ntt(d,s,);
for(int i=;i<s;i++)c[i]=(c[i]*d[i])%P;
ntt(c,s,-);ntt(d,s,);
}
inline void doit(int n,int m){
if(m==){++tot; zz[tot][]=mpow(a[],P-); return ;}
doit(n,(m+)/);int siz=(m+)/; ++tot;
for(int i=;i<s;i++)e[i]=b[i]=bel[i]=;
for(int i=;i<siz;i++){zz[tot][i]=(zz[tot-][i]*)%P;b[i]=zz[tot-][i];}
for(int i=min(n,m)-;i>=;--i)e[i]=a[i];
dontt(zz[tot-],b,siz,siz); siz=siz+siz-;
dontt(zz[tot-],e,siz,min(n,m));
for(int i=;i<m;i++)zz[tot][i]=((zz[tot][i]-zz[tot-][i])%P+P)%P;
}
int main(){
//freopen("a.in","r",stdin);
int n,m;scanf("%d%d",&n,&m);
for(int i=;i<n;i++){scanf("%lld",&a[i]);a[i]=((a[i]%P)+P)%P;}
doit(n,m);
for(int i=;i<m;i++)printf("%lld ",zz[tot][i]);
printf("\n");
return ;
}

JZYZOJ 2042 多项式逆元 NTT 多项式的更多相关文章

  1. luoguP4512 【模板】多项式除法 NTT+多项式求逆+多项式除法

    Code: #include<bits/stdc++.h> #define maxn 300000 #define ll long long #define MOD 998244353 # ...

  2. 【BZOJ3625】【CF438E】小朋友和二叉树 NTT 生成函数 多项式开根 多项式求逆

    题目大意 考虑一个含有\(n\)个互异正整数的序列\(c_1,c_2,\ldots ,c_n\).如果一棵带点权的有根二叉树满足其所有顶点的权值都在集合\(\{c_1,c_2,\ldots ,c_n\ ...

  3. [拉格朗日反演][FFT][NTT][多项式大全]详解

    1.多项式的两种表示法 1.系数表示法 我们最常用的多项式表示法就是系数表示法,一个次数界为\(n\)的多项式\(S(x)\)可以用一个向量\(s=(s_0,s_1,s_2,\cdots,s_n-1) ...

  4. NTT+多项式求逆+多项式开方(BZOJ3625)

    定义多项式$h(x)$的每一项系数$h_i$,为i在c[1]~c[n]中的出现次数. 定义多项式$f(x)$的每一项系数$f_i$,为权值为i的方案数. 通过简单的分析我们可以发现:$f(x)=\fr ...

  5. 【bzoj3456】城市规划 容斥原理+NTT+多项式求逆

    题目描述 求出n个点的简单(无重边无自环)无向连通图数目mod 1004535809(479 * 2 ^ 21 + 1). 输入 仅一行一个整数n(<=130000) 输出 仅一行一个整数, 为 ...

  6. 洛谷5月月赛T30212 玩游戏 【分治NTT + 多项式求ln】

    题目链接 洛谷T30212 题解 式子很容易推出来,二项式定理展开后对于\(k\)的答案即可化简为如下: \[k!(\sum\limits_{i = 0}^{k} \frac{\sum\limits_ ...

  7. 2019.01.01 bzoj3625:小朋友和二叉树(生成函数+多项式求逆+多项式开方)

    传送门 codeforces传送门codeforces传送门codeforces传送门 生成函数好题. 卡场差评至今未过 题意简述:nnn个点的二叉树,每个点的权值KaTeX parse error: ...

  8. 【BZOJ3625】【codeforces438E】小朋友和二叉树 生成函数+多项式求逆+多项式开根

    首先,我们构造一个函数$G(x)$,若存在$k∈C$,则$[x^k]G(x)=1$. 不妨设$F(x)$为最终答案的生成函数,则$[x^n]F(x)$即为权值为$n$的神犇二叉树个数. 不难推导出,$ ...

  9. FFT模板 生成函数 原根 多项式求逆 多项式开根

    FFT #include<iostream> #include<cstring> #include<cstdlib> #include<cstdio> ...

随机推荐

  1. 20181105 Timer(慕课网)

    定时任务调度 基于给定的时间点,给定的时间间隔或者给定的执行次数自动执行的任务 Java中的定时调度工具 Timer JDK提供,不许引入 功能简单,能用Timer尽量用 Quartz 需要引入 功能 ...

  2. MySQL事务及隔离级别详解

    MySQL事务及隔离级别详解 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.MySQL的基本架构 MySQL的基本架构可以分为三块,即连接池,核心功能层,存储引擎层. 1> ...

  3. JIRA项目管理搭建

    部署JIRA 7.2.2 for Linux 转自:http://www.yfshare.vip/2017/05/09/%E9%83%A8%E7%BD%B2JIRA-7-2-2-for-Linux/ ...

  4. 前三章 man手册 查看文件

    1 – 3章 1.1 man手册: 分1 - 9个区域,可以认为是一个一个小节 把man手册理解为一本书 第一节:可执行程序或shell命令 第二节:系统调用 第三节:库调用 第四节:特殊文件 第五节 ...

  5. iOS必学技-cocoapods

    我就不再造轮子了,网上的教程很详细,楼主亲测,好用. http://code4app.com/article/cocoapods-install-usage 楼主安装使用过程中遇到以下几个问题,同学们 ...

  6. Linux - trap 命令

    trap 命令用于指定在接收到信号后将要采取的动作,常见的用途是在脚本程序被中断时完成清理工作.当shell接收到sigspec指定的信号时,arg参数(命令)将会被读取,并被执行. trap 信号参 ...

  7. robotium 中通过id获取 View 以及进行相应的操作

    robotium 中id的几种表现形式 1)字符串形式:例如id/btn_example,源码中的布局里些的hierachy 中看见的都是这种. 2)数字形式:例如0x7f0700D,打开R.java ...

  8. 2013 ACM/ICPC 杭州网络赛C题

    题意:驴和老虎,在一个矩阵的两个格子里,有各自的起始方向.两者以相同的速度向前移动,前方不能走时驴总是向右,老虎总是向左.他们不能超出矩阵边界也不能走自己走过的格子(但可以走对方走过的格子).如果不能 ...

  9. 查找网内活跃IP和自动传输文本

    ifconfig p32p1|egrep -o "broadcast [^ ]*" |grep -o "[0-9.]*"grep -o "broadc ...

  10. snmp安装

    只为成功找方法,不为失败找借口! Snmp学习总结(六)——linux下安装和配置SNMP 一.安装SNMP 1.1.下载Net-SNMP的源代码 选择一个SNMP版本,比如5.7.1,下载地址如下: ...