HDU5286 wyh2000 and sequence

题意:

给出长为\(N\)的序列\(A_1,A_2,A_3,\cdots,A_n\),\(q\)次询问,每次询问给出区间\([L,R]\),假设区间内出现过的数为\(C_1,C_2,\cdots,C_k\),出现的次数分别为\(B_1,B_2,\cdots,B_k\),输出\(\sum_{i=1}^{k}C_i^{B_i} % 1000000007\),要求在线

题解:

如果不要求在线,直接用莫队很快就能解决,现在要求在线,还是考虑把序列分块,预处理出所有连续的块的答案,和到第\(i\)块为止,各个数出现的次数的前缀和

对于每次查询,如果在一个块内,就直接暴力查询

否则对于在两端非整块的元素,记录元素大小和出现次数,将这些元素带来的贡献计算一下即可

有点卡常

//#pragma GCC optimize("O3")
//#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<bits/stdc++.h>
using namespace std;
function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
const int MOD = 1e9+7;
const int MAXN = 5e4+7;
const int SQT = 240;
int n,q,m,sqt,A[MAXN],pre[SQT][MAXN],pos[MAXN],belong[MAXN],l[SQT],r[SQT],la;
int ans[SQT][SQT],num[MAXN];
vector<int> vec,cnt,pw[MAXN];
void divide(){
sqt = pow(n,0.5);
m = n / sqt + (n%sqt?1:0);
for(int i = 1; i <= n; i++) belong[i] = (i-1) / sqt + 1;
for(int i = 1; i <= m; i++) l[i] = (i-1) * sqt + 1, r[i] = i * sqt;
r[m] = n;
}
void gao(){
int L, R;
scanf("%d %d",&L,&R);
L = (L^la)%n+1; R = (R^la)%n+1;
if(L>R) L ^= R ^= L ^= R;
int lp = belong[L], rp = belong[R];
if(lp==rp){
int ret = 0;
for(int i = L; i <= R; i++) num[pos[i]] = 0;
for(int i = L; i <= R; i++){
ret = ret - pw[pos[i]][num[pos[i]]];
ret = ret + pw[pos[i]][++num[pos[i]]];
if(ret<0) ret += MOD;
if(ret>=MOD) ret -= MOD;
}
printf("%d\n",la=ret);
}
else{
vector<int> arr;
for(int i = L; i <= r[lp]; i++){
num[pos[i]] = 0;
arr.push_back(pos[i]);
}
for(int i = l[rp]; i <= R; i++){
num[pos[i]] = 0;
arr.push_back(pos[i]);
}
sort(arr.begin(),arr.end()); arr.erase(unique(arr.begin(),arr.end()),arr.end());
for(int i = L; i <= r[lp]; i++) num[pos[i]]++;
for(int i = l[rp]; i <= R; i++) num[pos[i]]++;
lp++, rp--;
int ret = ans[lp][rp];
for(int i = 0; i < (int)arr.size(); i++){
ret = ret - pw[arr[i]][pre[rp][arr[i]]-pre[lp-1][arr[i]]];
ret = ret + pw[arr[i]][pre[rp][arr[i]]-pre[lp-1][arr[i]]+num[arr[i]]];
if(ret<0) ret += MOD;
if(ret>=MOD) ret -= MOD;
}
printf("%d\n",la=ret);
}
}
void solve(){
scanf("%d %d",&n,&q);
vec.clear();
for(int i = 1; i <= n; i++){
scanf("%d",&A[i]);
vec.push_back(A[i]);
}
sort(vec.begin(),vec.end()); vec.erase(unique(vec.begin(),vec.end()),vec.end());
for(int i = 1; i <= n; i++) pos[i] = lower_bound(vec.begin(),vec.end(),A[i]) - vec.begin();
divide();
for(int i = 1; i <= m; i++) for(int j = 0; j < (int)vec.size(); j++) pre[i][j] = 0;
for(int i = 1; i <= n; i++) pre[belong[i]][pos[i]]++;
for(int i = 1; i <= m; i++) for(int j = 0; j < (int)vec.size(); j++) pre[i][j] += pre[i-1][j];
cnt.resize(vec.size());
for(int i = 0; i < (int)vec.size(); i++) cnt[i] = 0;
for(int i = 1; i <= n; i++) cnt[pos[i]]++;
for(int i = 0; i < (int)vec.size(); i++){
pw[i].resize(cnt[i]+1);
pw[i][0] = 1; for(int j = 1; j <= cnt[i]; j++) pw[i][j] = 1ll * pw[i][j-1] * vec[i] % MOD;
pw[i][0] = 0;
}
for(int i = 1; i <= m; i++){
memset(num,0,sizeof(num));
int p = l[i] - 1, ret = 0;
for(int j = i; j <= m; j++){
while(p<r[j]){
p++;
ret -= pw[pos[p]][num[pos[p]]];
ret += pw[pos[p]][++num[pos[p]]];
if(ret<0) ret += MOD;
if(ret>=MOD) ret -= MOD;
}
ans[i][j] = ret;
}
}
la = 0;
while(q--) gao();
for(int i = 0; i < (int)vec.size(); i++) pw[i].clear();
}
int main(){
int T;
for(scanf("%d",&T); T; T--) solve();
return 0;
}

HDU5286 wyh2000 and sequence【分块 均摊复杂度】的更多相关文章

  1. Mr. Kitayuta's Colorful Graph CodeForces - 506D(均摊复杂度)

    Mr. Kitayuta has just bought an undirected graph with n vertices and m edges. The vertices of the gr ...

  2. cf250D. The Child and Sequence(线段树 均摊复杂度)

    题意 题目链接 单点修改,区间mod,区间和 Sol 如果x > mod ,那么 x % mod < x / 2 证明: 即得易见平凡, 仿照上例显然, 留作习题答案略, 读者自证不难. ...

  3. 3L-最好、最坏、平均、均摊时间复杂度

    关注公众号 MageByte,设置星标点「在看」是我们创造好文的动力.后台回复 "加群" 进入技术交流群获更多技术成长. 本文来自 MageByte-青叶编写 上次我们说过 时间复 ...

  4. 洛谷 P6783 - [Ynoi2008] rrusq(KDT+势能均摊+根号平衡)

    洛谷题面传送门 首先显然原问题严格强于区间数颜色,因此考虑将询问离线下来然后用某些根号级别复杂度的数据结构.按照数颜色题目的套路,我们肯定要对于每种颜色维护一个前驱 \(pre\),那么答案可写作 \ ...

  5. Chapter4 复杂度分析(下):浅析最好,最坏,平均,均摊时间复杂度

    四个复杂度分析: 1:最好情况时间复杂度(best case time complexity) 2:最坏情况时间复杂度(worst case time complexity) 3:平均情况时间复杂度( ...

  6. 【loj6029】「雅礼集训 2017 Day1」市场 线段树+均摊分析

    题目描述 给出一个长度为 $n$ 的序列,支持 $m$ 次操作,操作有四种:区间加.区间下取整除.区间求最小值.区间求和. $n\le 100000$ ,每次加的数在 $[-10^4,10^4]$ 之 ...

  7. 【uoj#228】基础数据结构练习题 线段树+均摊分析

    题目描述 给出一个长度为 $n$ 的序列,支持 $m$ 次操作,操作有三种:区间加.区间开根.区间求和. $n,m,a_i\le 100000$ . 题解 线段树+均摊分析 对于原来的两个数 $a$ ...

  8. HDU - 6098:Inversion(暴力均摊)

    Give an array A, the index starts from 1. Now we want to know B i =max i∤j A j  Bi=maxi∤jAj , i≥2 i≥ ...

  9. 《数据结构与算法之美》 <02>复杂度分析(下):浅析最好、最坏、平均、均摊时间复杂度?

    上一节,我们讲了复杂度的大 O 表示法和几个分析技巧,还举了一些常见复杂度分析的例子,比如 O(1).O(logn).O(n).O(nlogn) 复杂度分析.掌握了这些内容,对于复杂度分析这个知识点, ...

随机推荐

  1. golang遍历时修改被遍历对象

    目录 前言 遍历切片 遍历map 总结 前言 很多时候需要将遍历对象中去掉某些元素,或者往遍历对象中添加元素,这时候就需要小心操作了. 对于go语言中的一些注意事项我做了总结和示例,留下点笔记. 遍历 ...

  2. (十七)logging模块

    logging模块是Python内置的标准模块,主要用于输出运行日志. 简单应用 import logging logging.debug('+++debug+++') logging.info('+ ...

  3. 【ORA】ORA-00030: User session ID does not exist.

    今天巡检,查询锁相关的情况的时候,确认业务后,准备将锁干掉,但是干掉的时候报了一个错误,ORA-00030 发现回话不存在,我以为pmon进程已经将锁进程kill掉了,就再次查看,发现,还是存在 这个 ...

  4. EFCore 5 新特性 —— Savepoints

    EFCore 5 中的 Savepoints Intro EFCore 5中引入了一个新特性,叫做 Savepoints,主要是事务中使用,个人感觉有点类似于 Windows 上的系统还原点,如果事务 ...

  5. Ajax函数的封装

    Ajax函数的封装 function ajax(options) { // 1 创建Ajax对象 let xhr = new XMLHttpRequest(); // 2 告诉Ajax对象要想哪儿发送 ...

  6. selenium浏览器弹出框alert 操作

    1.简介 在WebDriver中要处理JS生成的alert.confirm以及prompt,需要 switch_to.alert() 来选取(定位)警告弹窗,在对弹窗进行关闭.输入等信息操作. 2.操 ...

  7. 浅析Linux用户空间中的Mmap

    一.MMap基础概念 mmap是一种内存映射文件的方法,即将一个文件或者其它对象映射到进程的地址空间,实现文件磁盘地址和进程虚拟地址空间中一段虚拟地址的一一对映关系.实现这样的映射关系后,进程就可以采 ...

  8. 如何实现new,call,apply,bind的底层原理。

    new做了什么? new是用来实例化对象的,当new了一个对象后 1.创建一个新对象 2.将构造函数的作用域赋值给新对象(this指向新对象) 3.执行构造函数里面的代码(为这个新对象添加属性) 4. ...

  9. 变量隐藏Accidental Variable Shadowing

    6.5 - Variable shadowing (name hiding) | Learn C++ https://www.learncpp.com/cpp-tutorial/variable-sh ...

  10. 6到8个月如何达到三年加得前端经验,对标P7,“慕课网 Java工程师2020”

    百度网盘链接:https://pan.baidu.com/s/1xshLRO3ru0LAsQQ0pE67Qg 提取码:bh9f   阶段一:课程设计及前端创建脚手架开发 第1周   需求分析和架构设计 ...