poj1180 Batch Scheduling
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 3590 | Accepted: 1654 |
Description
The processing starts at time 0. The batches are handled one by one starting from the first batch as follows. If a batch b contains jobs with smaller numbers than batch c, then batch b is handled before batch c. The jobs in a batch are processed successively
on the machine. Immediately after all the jobs in a batch are processed, the machine outputs the results of all the jobs in that batch. The output time of a job j is the time when the batch containing j finishes.
A setup time S is needed to set up the machine for each batch. For each job i, we know its cost factor Fi and the time Ti required to process it. If a batch contains the jobs x, x+1,... , x+k, and starts at time t, then the output time of every job in that
batch is t + S + (Tx + Tx+1 + ... + Tx+k). Note that the machine outputs the results of all jobs in a batch at the same time. If the output time of job i is Oi, its cost is Oi * Fi. For example, assume that there are 5 jobs,
the setup time S = 1, (T1, T2, T3, T4, T5) = (1, 3, 4, 2, 1), and (F1, F2, F3, F4, F5) = (3, 2, 3, 3, 4). If the jobs are partitioned into three batches {1, 2}, {3}, {4, 5}, then the output times (O1, O2, O3, O4, O5) = (5, 5, 10, 14, 14) and the costs of the
jobs are (15, 10, 30, 42, 56), respectively. The total cost for a partitioning is the sum of the costs of all jobs. The total cost for the example partitioning above is 153.
You are to write a program which, given the batch setup time and a sequence of jobs with their processing times and cost factors, computes the minimum possible total cost.
Input
that order as follows. First on each of these lines is an integer Ti, 1 <= Ti <= 100, the processing time of the job. Following that, there is an integer Fi, 1 <= Fi <= 100, the cost factor of the job.
Output
Sample Input
5
1
1 3
3 2
4 3
2 3
1 4
Sample Output
153
这题顺着推很难推,因为对于dp[i],查找的dp[k]和前k个部件运完后的时间不知道,而这两者都会影响dp[i],所以考虑倒着推。可以发现每个任务对对最后代价的贡献实际上等于它及它以后的f之和乘以它的时间t,即后面的任务都要为它等上t的时间,会多花f*t的代价。用dp[i]表示i到n部件运送完后所花的最小价值,用st[i]表示i到n的所有时间和,sf[i]表示i到n的所有价值和,那么dp[i]=min(dp[k]+(st[i]-st[k]+s)*f[i]).
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<algorithm>
using namespace std;
typedef long long ll;
#define inf 99999999
#define pi acos(-1.0)
#define maxn 10050
int dp[maxn];
int t[maxn],v[maxn];
int q[1111111];
int main()
{
int n,m,i,j,s;
while(scanf("%d",&n)!=EOF)
{
scanf("%d",&s);
for(i=0;i<=n;i++)dp[i]=inf;
dp[0]=0;
for(i=1;i<=n;i++){
scanf("%d%d",&t[i],&v[i]);
}
reverse(t+1,t+1+n);
reverse(v+1,v+1+n);
t[0]=v[0]=0;
for(i=1;i<=n;i++){
t[i]=t[i-1]+t[i];
v[i]=v[i-1]+v[i];
}
int front,rear;
front=rear=1;
q[rear]=0;
for(i=1;i<=n;i++){
while(front<rear && (dp[q[front+1] ]-dp[q[front] ]<=v[i]*(t[q[front+1] ]-t[q[front] ]) ) ){
front++;
}
int k=q[front];
dp[i]=dp[k]+(s+t[i]-t[k])*v[i];
while(front<rear && (dp[q[rear] ]-dp[q[rear-1] ])*(t[i]-t[q[rear] ])>=(dp[i]-dp[q[rear] ] )*(t[q[rear] ]-t[q[rear-1] ]) ){
rear--;
}
rear++;
q[rear]=i;
}
printf("%d\n",dp[n]);
}
return 0;
}
poj1180 Batch Scheduling的更多相关文章
- POJ1180 Batch Scheduling 解题报告(斜率优化)
题目链接:http://poj.org/problem?id=1180 题目描述: There is a sequence of N jobs to be processed on one machi ...
- POJ-1180 Batch Scheduling (分组求最优值+斜率优化)
题目大意:有n个任务,已知做每件任务所需的时间,并且每件任务都对应一个系数fi.现在,要将这n个任务分成若干个连续的组,每分成一个组的代价是完成这组任务所需的总时间加上一个常数S后再乘以这个区间的系数 ...
- POJ1180 Batch Scheduling -斜率优化DP
题解 将费用提前计算可以得到状态转移方程: $F_i = \min(F_j + sumT_i * (sumC_i - sumC_j) + S \times (sumC_N - sumC_j)$ 把方程 ...
- [POJ1180&POJ3709]Batch Scheduling&K-Anonymous Sequence 斜率优化DP
POJ1180 Batch Scheduling Description There is a sequence of N jobs to be processed on one machine. T ...
- poj 1180 Batch Scheduling (斜率优化)
Batch Scheduling \(solution:\) 这应该是斜率优化中最经典的一道题目,虽然之前已经写过一道 \(catstransport\) 的题解了,但还是来回顾一下吧,这道题其实较那 ...
- POJ 1180 - Batch Scheduling - [斜率DP]
题目链接:http://poj.org/problem?id=1180 Description There is a sequence of N jobs to be processed on one ...
- POJ 1180 Batch Scheduling
BTW: 刚在图书馆借了本算法艺术与信息学竞赛. 我多次有买这本书的冲动, 但每次在试看之后就放弃了, 倒不是因为书太难, 而是写的实在是太差. 大家对这本书的评价很高, 我觉得多是因为书的内容, 而 ...
- POJ 1180 Batch Scheduling (dp,双端队列)
#include <iostream> using namespace std; + ; int S, N; int T[MAX_N], F[MAX_N]; int sum_F[MAX_N ...
- POJ 1180 Batch Scheduling(斜率优化DP)
[题目链接] http://poj.org/problem?id=1180 [题目大意] N个任务排成一个序列在一台机器上等待完成(顺序不得改变), 这N个任务被分成若干批,每批包含相邻的若干任务. ...
随机推荐
- 通过写n本书的积累,我似乎找到了写好技术文章的方法(回复送我写的python股票电子书)
我写的书不算少,写的博文就更多了,但大多数书的销量也就一般,而我写的技术文章里,虽然也有点击过万的,但不少点击量也就只有三位数. 通过不断反思,也通过对比了一些畅销书和顶流文章,我似乎找到了一些原因, ...
- 【ASM】asm从共享磁盘复制到本地磁盘中
将ASM里面的文件copy到文件系统 数据文件存放在ASM里面查看不是很直观,有时候需要把文件从ASM里面copy到文件系统.我记录了一下两种方法,还有一种用AMDU,ODU也可以实现 1. 直接在a ...
- CTFHub - Misc(流量分析)
数据库类流量: MySQL流量: 1.下载附件,是一个.pcap文件,用wireshark分析, 2.搜索ctfhub字段,即可得到flag, flag: ctfhub{mysql_is_S0_E4s ...
- oracle绑定变量测试及性能对比
1.创建测试数据 2.查看cursor_sharing的值 SQL> show parameter cursor_sharing; NAME TYPE VALUE --------------- ...
- powershell中的cmdlet命令
Add-Computer 向域或工作组中添加计算机. Add-Content 向指定的项中添加内容,如向文件中添加字词. Add-History 向会话历史记录追加条目. Add-Member 向 W ...
- Springmvc中参数的绑定
.处理器适配器在执行Handler之前需要把http请求的key/value数据绑定到Handler方法形参数上. 1.默认支持的参数类型: HttpServletRequest,HttpServle ...
- Java并发编程常识
这是why的第 85 篇原创文章 写中间件经常要做两件事: 1.延迟加载,在内存缓存已加载项. 2.统计调用次数,拦截并发量. 就这么个小功能,团队里的人十有八九写错. 上面这句话不是我说的,是梁飞在 ...
- Kubernetes 存储简介
存储分类结构图 半持久化存储 1.EmptyDir EmptyDir是一个空目录,生命周期和所属的 Pod 是完全一致的,EmptyDir的用处是,可以在同一 Pod 内的不同容器之间共享工作过程中产 ...
- jQuery 多选与清除
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...
- Jenkins部署springboot项目
记录jenkins如何部署springboot项目(jar类型的) 一.首先需要先配置好jenkins的基本配置(jdk.maven--),可在系统管理-->>全局工具配置中进行配置. 配 ...