poj1180 Batch Scheduling
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 3590 | Accepted: 1654 |
Description
The processing starts at time 0. The batches are handled one by one starting from the first batch as follows. If a batch b contains jobs with smaller numbers than batch c, then batch b is handled before batch c. The jobs in a batch are processed successively
on the machine. Immediately after all the jobs in a batch are processed, the machine outputs the results of all the jobs in that batch. The output time of a job j is the time when the batch containing j finishes.
A setup time S is needed to set up the machine for each batch. For each job i, we know its cost factor Fi and the time Ti required to process it. If a batch contains the jobs x, x+1,... , x+k, and starts at time t, then the output time of every job in that
batch is t + S + (Tx + Tx+1 + ... + Tx+k). Note that the machine outputs the results of all jobs in a batch at the same time. If the output time of job i is Oi, its cost is Oi * Fi. For example, assume that there are 5 jobs,
the setup time S = 1, (T1, T2, T3, T4, T5) = (1, 3, 4, 2, 1), and (F1, F2, F3, F4, F5) = (3, 2, 3, 3, 4). If the jobs are partitioned into three batches {1, 2}, {3}, {4, 5}, then the output times (O1, O2, O3, O4, O5) = (5, 5, 10, 14, 14) and the costs of the
jobs are (15, 10, 30, 42, 56), respectively. The total cost for a partitioning is the sum of the costs of all jobs. The total cost for the example partitioning above is 153.
You are to write a program which, given the batch setup time and a sequence of jobs with their processing times and cost factors, computes the minimum possible total cost.
Input
that order as follows. First on each of these lines is an integer Ti, 1 <= Ti <= 100, the processing time of the job. Following that, there is an integer Fi, 1 <= Fi <= 100, the cost factor of the job.
Output
Sample Input
5
1
1 3
3 2
4 3
2 3
1 4
Sample Output
153
这题顺着推很难推,因为对于dp[i],查找的dp[k]和前k个部件运完后的时间不知道,而这两者都会影响dp[i],所以考虑倒着推。可以发现每个任务对对最后代价的贡献实际上等于它及它以后的f之和乘以它的时间t,即后面的任务都要为它等上t的时间,会多花f*t的代价。用dp[i]表示i到n部件运送完后所花的最小价值,用st[i]表示i到n的所有时间和,sf[i]表示i到n的所有价值和,那么dp[i]=min(dp[k]+(st[i]-st[k]+s)*f[i]).
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<algorithm>
using namespace std;
typedef long long ll;
#define inf 99999999
#define pi acos(-1.0)
#define maxn 10050
int dp[maxn];
int t[maxn],v[maxn];
int q[1111111];
int main()
{
int n,m,i,j,s;
while(scanf("%d",&n)!=EOF)
{
scanf("%d",&s);
for(i=0;i<=n;i++)dp[i]=inf;
dp[0]=0;
for(i=1;i<=n;i++){
scanf("%d%d",&t[i],&v[i]);
}
reverse(t+1,t+1+n);
reverse(v+1,v+1+n);
t[0]=v[0]=0;
for(i=1;i<=n;i++){
t[i]=t[i-1]+t[i];
v[i]=v[i-1]+v[i];
}
int front,rear;
front=rear=1;
q[rear]=0;
for(i=1;i<=n;i++){
while(front<rear && (dp[q[front+1] ]-dp[q[front] ]<=v[i]*(t[q[front+1] ]-t[q[front] ]) ) ){
front++;
}
int k=q[front];
dp[i]=dp[k]+(s+t[i]-t[k])*v[i];
while(front<rear && (dp[q[rear] ]-dp[q[rear-1] ])*(t[i]-t[q[rear] ])>=(dp[i]-dp[q[rear] ] )*(t[q[rear] ]-t[q[rear-1] ]) ){
rear--;
}
rear++;
q[rear]=i;
}
printf("%d\n",dp[n]);
}
return 0;
}
poj1180 Batch Scheduling的更多相关文章
- POJ1180 Batch Scheduling 解题报告(斜率优化)
题目链接:http://poj.org/problem?id=1180 题目描述: There is a sequence of N jobs to be processed on one machi ...
- POJ-1180 Batch Scheduling (分组求最优值+斜率优化)
题目大意:有n个任务,已知做每件任务所需的时间,并且每件任务都对应一个系数fi.现在,要将这n个任务分成若干个连续的组,每分成一个组的代价是完成这组任务所需的总时间加上一个常数S后再乘以这个区间的系数 ...
- POJ1180 Batch Scheduling -斜率优化DP
题解 将费用提前计算可以得到状态转移方程: $F_i = \min(F_j + sumT_i * (sumC_i - sumC_j) + S \times (sumC_N - sumC_j)$ 把方程 ...
- [POJ1180&POJ3709]Batch Scheduling&K-Anonymous Sequence 斜率优化DP
POJ1180 Batch Scheduling Description There is a sequence of N jobs to be processed on one machine. T ...
- poj 1180 Batch Scheduling (斜率优化)
Batch Scheduling \(solution:\) 这应该是斜率优化中最经典的一道题目,虽然之前已经写过一道 \(catstransport\) 的题解了,但还是来回顾一下吧,这道题其实较那 ...
- POJ 1180 - Batch Scheduling - [斜率DP]
题目链接:http://poj.org/problem?id=1180 Description There is a sequence of N jobs to be processed on one ...
- POJ 1180 Batch Scheduling
BTW: 刚在图书馆借了本算法艺术与信息学竞赛. 我多次有买这本书的冲动, 但每次在试看之后就放弃了, 倒不是因为书太难, 而是写的实在是太差. 大家对这本书的评价很高, 我觉得多是因为书的内容, 而 ...
- POJ 1180 Batch Scheduling (dp,双端队列)
#include <iostream> using namespace std; + ; int S, N; int T[MAX_N], F[MAX_N]; int sum_F[MAX_N ...
- POJ 1180 Batch Scheduling(斜率优化DP)
[题目链接] http://poj.org/problem?id=1180 [题目大意] N个任务排成一个序列在一台机器上等待完成(顺序不得改变), 这N个任务被分成若干批,每批包含相邻的若干任务. ...
随机推荐
- LeetCode 二分查找模板 I
模板 #1: int binarySearch(vector<int>& nums, int target){ if(nums.size() == 0) return -1; in ...
- sort方法和sorted()函数
sort方法和sorted()函数的区别: 相同点:都能完成排序操作. 不同点: (1)使用sort()方法对list排序会修改list本身,不会返回新list,sort()不能对dict字典进行排序 ...
- 【Java】网络编程之NIO
简单记录 慕课网-解锁网络编程之NIO的前世今生 & 一站式学习Java网络编程 全面理解BIO/NIO/AIO 内容概览 文章目录 1.[了解] NIO网络编程模型 1.1.NIO简介 1. ...
- 【Software Test】Introduction to Software Testing
Introduction to Software Testing 文章目录 Going to Learn --. Evolution of The Software Industry Errors, ...
- 记录Js动态加载页面.append、html、appendChild、repend添加元素节点不生效以及解决办法
今天再优化blog页面的时候添加了个关注按钮和图片,但是页面上这个按钮和图片时有时无,本来是搞后端的,被这个前端的小问题搞得抓耳挠腮的! 网上各种查询解决方案,把我解决问题的艰辛历程分享出来,希望大家 ...
- 实现简易版德州扑克|学习麻瓜编程以项目为导向入门前端 HTML+CSS+JS
实现简易版德州扑克 1.先上达到网页效果图(简易版德州扑克) 网页分为发牌区和牌池,上面为发牌区,下面是牌池区 2. 代码实现 2.1 HTML和JS代码 ` <link rel="s ...
- Spring Validation 验证
基本配置 1.pom引入maven依赖 <dependency> <groupId>javax.validation</groupId> <artifactI ...
- Maven + springboot + mybatis 构建多模块工程
废话不说先上最终效果:创建一个空项目,再创建一个父项目用来管理各模块并维护各模块关系,简要说明如下: parent模块:主要用来管理以下各模块,和各模块涉及的jar包版本和boot项目入口级的的依赖管 ...
- 全栈性能测试修炼宝典-JMeter实战笔记(二)
性能测试初体验 性能测试实质:利用工具去模拟大量用户操作来验证系统能够承受的负载情况,找出潜在的性能问题,分析并解决:找出系统性能变化趋势,为后续的扩展提供参考 测试分类 测试内容中,负载测试.压力测 ...
- zabbix指定版本自动化安装脚本shell
安装服务端zabbix 有时候要部署一个zabbix各种配置啊贼烦. #!/bin/sh #sleep 10 zabbix_version=4.2.5 ###这里你自定义版本,我要的是4.2.5 za ...