e的存在性证明和计算公式的证明
\(\quad\quad前言\quad\quad\\\)
\(此证明,改编自中科大数分教材,史济怀版\\\)
\(中科大教材,用的是先固定m,再放大m,跟菲赫金哥尔茨的方法一样。\\\)
\(而我这里的证明,是依据m的任意性,后来发现小平邦彦的《微积分入门》里,也是用的这个方法,即,m的任意性。\\\)
\(中科大和菲赫金哥尔茨用的记号是a_{m},我在知乎咨询龚漫奇老师后,根据龚老师的建议,改为a_{n,m},以避免\\\)
\(混淆,否则a_{m},相当于a_{n}的n取值m,只有一个变量n,取值m,而a_{n}{m}有两个变量m,n\\\)
\(对e_{n,m}取极限时,相当于二元二次极限(注意,非二重极限),即n,m,一先一后取极限,而非二重极限\\\)
\(同时,我在证明中明确了数列极限的保不等式性的应用,\\\)
\(用了两次数列保不等式性,把e当做常数数列。\\\)
\(中科大和菲赫金哥尔茨的先固定m,对n取极限之后,再对m取极限,本质上就是二元二次极限,但是并未明确提及\\\)
\(二元二次极限这个概念\)
\(------------------------------------------------------------\\\)
\(记S_{n}=\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\cdot\cdot\cdot+\frac{1}{n!}\)
\(显然,S_{n}是递增数列, 且\)
\(S_{n}\leqslant1+1+\frac{1}{2}+\frac{1}{2^2}+\cdot\cdot\cdot+\frac{1}{2^(n-1)}<3\)
\(显然,S_{n}是递增\)
\(因为当n趋于无穷时,1+1+\frac{1}{2}+\frac{1}{2^2}+\cdot\cdot\cdot+\frac{1}{2^(n-1)}=3\)
\(故S_{n}是递增有界数列,可知其必有极限,设其极限为S\)
\(则S=lim_{n \to \infty}\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\cdot\cdot\cdot+\frac{1}{n!}\)
\(对e_{n}进行二项式展开\)
\(e_{n}={(1+\frac{1}{n})}^{n}\) (其中,n\(\in\)\(N^{+}\))
\(\quad=\sum_{k=0}^{n}\)\(C_{n}^{n-k}\)\((\frac{1}{n})^{k}\)
\(\quad=1+\sum_{k=1}^{n}\)\(C_{n}^{n-k}\)\(\frac{1}{n^{k}}\)
\(\quad=1+\sum_{k=1}^{n}\frac{n!}{(n-k)!k!}\frac{1}{n^{k}}\)
\(\quad=1+\sum_{k=1}^{n}\frac{1}{k!}\frac{n!}{(n-k)!}\frac{1}{n^{k}}\)
\(\quad=1+\sum_{k=1}^{n}\frac{1}{k!}\frac{(n-k+1)(n-k+2)\cdot\cdot\cdot n}{n^{k}}\)
\(因为 1*2*3\cdot\cdot\cdot(n-k)(n-k+1)(n-k+2)...n\)
从1到n-k,一共是n-k个连续数字相乘,从n-k+1到n,合计k个连续数字相乘,从1到n,合计是n个连续数字相乘
故
上式\(=1+\sum_{k=1}^{n}\frac{1}{k!}\frac{(n-k+1)(n-k+2)(n-k+3)\cdot\cdot\cdot (n-2)(n-1)n(一共k个数字)}{nnn\cdot\cdot\cdot n(一共k个n)}\)
\(\quad=1+\sum_{k=1}^{n}\frac{1}{k!}\frac{n(n-1)(n-2)\cdot\cdot\cdot (n-k+3)(n-k+2)(n-k+1)(一共k个数字)}{nnn\cdot\cdot\cdot n(一共k个n)}\)
\(\quad=1+\sum_{k=1}^{n}\frac{1}{k!}\frac{n}{n}\frac{n-1}{n}\frac{n-2}{n}\cdot\cdot\cdot\frac{n-k+2}{n}\frac{n-k+1}{n}\)
\(\quad=1+\sum_{k=1}^{n}\frac{1}{k!}*1*(1-\frac{1}{n})(1-\frac{2}{n})\cdot\cdot\cdot\frac{n-k+2}{n}\frac{n-k+1}{n}\)
\(\quad=1+\sum_{k=1}^{n}\frac{1}{k!}(1-\frac{1}{n})(1-\frac{2}{n})\cdot\cdot\cdot (1-\frac{k-2}{n})(1-\frac{k-1}{n})\) (一共k-1个括号)
展开连加号
\(\quad=1+\frac{1}{1!}+\frac{1}{2!}(1-\frac{1}{n})+\frac{1}{3!}(1-\frac{1}{n})(1-\frac{2}{n})+\cdot\cdot\cdot+\frac{1}{n!}(1-\frac{1}{n})(1-\frac{2}{n})\cdot\cdot\cdot(1-\frac{n-1}{n})\)
上式最后一项,是取k=n,一共n-1个括号
上式一共n+1项
\(由上式可知\\\)
\(e_{n}\leqslant1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\cdot\cdot\cdot+\frac{1}{n!}\)
\(\quad\leqslant1+1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}\cdot\cdot\cdot+\frac{1}{2^n}\)
\(=1+1*\frac{1-\frac{1}{2}^n}{1-\frac{1}{2}}\)
\(=1+2*(1-\frac{1}{2}^n)\)
\(=1+2-\frac{1}{2^{n-1}}\)\(\\\)
< 3
\(且e_{n}\leqslant S\)
\(e_{n+1}={(1+\frac{1}{n+1})}^{n+1}\) (其中,n\(\in\)\(N^{+}\))
\(\quad=\sum_{k=0}^{n+1}\)\(C_{n+1}^{n+1-k}\)\((\frac{1}{n+1})^{k}\)
\(\quad=\sum_{k=0}^{n+1}\frac{1}{k!}\frac{(n+1)!}{(n+1-k)!}\frac{1}{(n+1)^k}\)
\(\quad=\sum_{k=0}^{n+1}\frac{1}{k!}\frac{(n+1-k+1)(n+1-k+2)(n+1-k+3)\cdot\cdot\cdot(n+1)(k个括号)}{(n+1)^k}\) bbbb
\(\quad=\sum_{k=0}^{n+1}\frac{1}{k!}\frac{(n+1-k+1)(n+1-k+2)(n+1-k+3)\cdot\cdot\cdot(n+1)(k个括号)}{(n+1)\cdot\cdot\cdot(n+1)(k个(n+1))}\)
\(\quad=\sum_{k=0}^{n+1}\frac{1}{k!}\frac{(n+1)n(n-1)\cdot\cdot\cdot(n+1-k+3)(n+1-k+2)(n+1-k+1)(k个括号)}{(n+1)\cdot\cdot\cdot(n+1)(k个(n+1))}\)
\(\quad=1+\sum_{k=1}^{n+1}\frac{1}{k!}(1-\frac{1}{n+1})(1-\frac{2}{n+1})\cdot\cdot\cdot (1-\frac{k-2}{n+1})(1-\frac{k-1}
{n+1})\) (一共k-1个括号)\(\\\)
\(\quad=1+\frac{1}{1!}+\frac{1}{2!}(1-\frac{1}{n+1})+\frac{1}{3!}(1-\frac{1}{n+1})(1-\frac{2}{n+1})+\cdot\cdot\cdot+\frac{1}{(n+1)!}(1-\frac{1}{n+1})(1-\frac{2}{n+1})\cdot\cdot\cdot(1-\frac{n}{n+1})\)
\(即:e_{n}=1+\frac{1}{1!}+\frac{1}{2!}(1-\frac{1}{n})+\frac{1}{3!}(1-\frac{1}{n})(1-\frac{2}{n})+\cdot\cdot\cdot+\frac{1}{n!}(1-\frac{1}{n})(1-\frac{2}{n})\cdot\cdot\cdot(1-\frac{n-1}{n})\\\)
\(即:e_{n+1}=1+\frac{1}{1!}+\frac{1}{2!}(1-\frac{1}{n+1})+\frac{1}{3!}(1-\frac{1}{n+1})(1-\frac{2}{n+1})+\cdot\cdot\cdot+\frac{1}{(n+1)!}(1-\frac{1}{n+1})(1-\frac{2}{n+1})\cdot\cdot\cdot(1-\frac{n}{n+1})\\\)
\(可知e_{n+1}为n+2项,e_{n}为n+1项,e_{n+1}比e_{n}多一项,且前面的n+1项都大于e_{n}的对应位置的项\\\)
\(可知e_{n+1}>e_{n}, 可知e_{n}为递增数列,且有上界3,根据单调递增有界数列必有极限,可知e_{n}有极限。\)\(\\\)
\(为e,即lim_{n\to \infty}e_{n}=e\)
\(即lim_{n\to \infty}e_{n}=lim_{n\to \infty}(1+\frac{1}{1!}+\frac{1}{2!}(1-\frac{1}{n})+\frac{1}{3!}(1-\frac{1}{n})(1-\frac{2}{n})+\cdot\cdot\cdot+\frac{1}{n!}(1-\frac{1}{n})(1-\frac{2}{n})\cdot\cdot\cdot(1-\frac{n-1}{n}))\)
\(\forall m\in N^+且m\leqslant n,设\\\)
\(e_{n,m}=1+\frac{1}{1!}+\frac{1}{2!}(1-\frac{1}{n})+\cdot\cdot+\frac{1}{m!}(1-\frac{1}{n})(1-\frac{2}{n})\cdot\cdot\cdot(1-\frac{m-1}{n})\\\)
\(即:e_{n,m}是e_{n}的前m项和,所以,\forall n 都有下面的不等式成立\)
\(e_{n}\geqslant e_{n,m}\)
\(根据数列极限的保不等式性,两侧对n取极限,不等式依然成立,即:\\\)
\(lim_{n \to \infty}e_{n}\geqslant lim_{n \to \infty}e_{n,m}=1+1+\frac{1}{2!}+\frac{1}{3!}+\cdot\cdot+\frac{1}{m!}\)
\(即\quad e \geqslant lim_{n \to +\infty}e_{n,m}=1+1+\frac{1}{2!}+\frac{1}{3!}+\cdot\cdot+\frac{1}{m!}\)
\(此时该不等式左侧为常量e,右侧的最终结果,已经不包含变量n,仅包含变量m,而m的要求是m\leqslant n,此时n为无穷大,\\\)
\(所以m可以取任意值,即\forall m,都有 e\geqslant lim_{n \to \infty}e_{n,m}=1+1+\frac{1}{2!}+\frac{1}{3!}+\cdot\cdot+\frac{1}{m!}=S_{m}\\\)
由数列极限的保不等式性,对m取极限,可得
\(e\geqslant lim_{m \to \infty}lim_{n \to \infty}e_{n,m}=lim_{m \to \infty}\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\cdot\cdot++\frac{1}{m!}=S\)
\(而前面已经证明 e\leqslant S\)
\(故,得到S\leqslant e\leqslant S\quad\quad (注意 \geqslant意为"不小于",\leqslant意为“不大于”)\)
所以 e=S,即
\(e=lim_{n \to \infty}(\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\cdot\cdot+...\frac{1}{n!})\)
\(说明:在n\to \infty的过程中,e_{n}各项都在增大,趋于对应的阶乘倒数,\\\)
\(在n取无穷大时,e_{n\to +\infty}所有项的极限都是阶乘倒数,其极限和的极限是倒数阶乘之和\\\)
e的存在性证明和计算公式的证明的更多相关文章
- 二分图最小覆盖的Konig定理及其证明,最小的覆盖证明
[转http://www.cppblog.com/abilitytao/archive/2009/09/02/95147.html -> http://yejingx.ycool.com/p ...
- 2020-BUAA OO-面向对象设计与构造-HW11中对ageVar采用缓存优化的等价性证明(包括溢出情况)
HW11中对ageVar采用缓存优化的等价性证明(包括溢出情况) 概要 我们知道,第三次作业里age上限变为2000,而如果缓存年龄的平方和,2000*2000*800 > 2147483647 ...
- 深入了解 Scala 并发性
2003 年,Herb Sutter 在他的文章 “The Free Lunch Is Over” 中揭露了行业中最不可告人的一个小秘密,他明确论证了处理器在速度上的发展已经走到了尽头,并且将由全新的 ...
- 《Linear Algebra and Its Applications》-chaper6-正交性和最小二乘法-基本概念与定理
这一章节我们主要讨论定义在R^n空间上的向量之间的关系,而这个关系概括来讲其实就是正交,然后引入正交投影.最佳逼近定理等,这些概念将为我们在求无解的线性方程组Ax=b的最优近似解打下基石. 正交性: ...
- 证明 poj 1014 模优化修剪,部分递归 有错误
这个问题是存在做.我发现即使是可行的一个问题,但不一定正确. 大部分数据疲软,因为主题. id=1014">poj 1014 Dividing 题目大意:有6堆石头,权重分别为1 2 ...
- 康复计划#5 Matrix-Tree定理(生成树计数)的另类证明和简单拓展
本篇口胡写给我自己这样的什么都乱证一通的口胡选手 以及那些刚学Matrix-Tree,大致理解了常见的证明但还想看看有什么简单拓展的人- 大概讲一下我自己对Matrix-Tree定理的一些理解.常见版 ...
- IPFS:Filecoin和复制证明
这篇文章主要来讲一下Filecoin协议里面的复制证明(Proof of Replication),由于协议涉及到很多概念,可能看起来有点晕乎乎的,小编尽量把复杂问题简单化 ,力求给大家做大普及IPF ...
- poj 2480 Longge's problem 积性函数性质+欧拉函数
题意: 求f(n)=∑gcd(i, N) 1<=i <=N. 分析: f(n)是积性的数论上有证明(f(n)=sigma{1<=i<=N} gcd(i,N) = sigma{d ...
- 约数个数函数(d)的一个性质证明
洛谷P3327 [SDOI2015]约数个数和 洛谷P4619 [SDOI2018]旧试题 要用到这个性质,而且网上几乎没有能看的证明,所以特别提出来整理一下. \[ d(AB) = \sum_{x| ...
随机推荐
- Python实用笔记 (8)高级特性——迭代
如果给定一个list或tuple,我们可以通过for循环来遍历这个list或tuple,这种遍历我们称为迭代(Iteration). 比如dict就可以迭代: >>> d = {'a ...
- 《Java并发编程之美》
简介 码云笔记 java-concurrent/TheBeautyOfConcurrentProgram
- ajax前后端交互原理(4)
4.JSON 4.1 什么是JSON? JavaScript 对象表示法(JavaScript Object Notation)简称JSON,是一种轻量级的数据交换格式.虽然它基于JavaScript ...
- 001_Linux常用命令之ls命令
1. 认识Linux系统目录结构 /bin 可执行文件所在目录 /media 挂载设备媒体,u盘,光驱等 /mnt 该目录主要是为了让用户挂在别的文件系统(挂在自己的u盘) /usr unix sys ...
- autocomplete 之 ASP.NET
<link href="CSS/jquery.autocomplete.css" rel="stylesheet" type="text/css ...
- 浅谈pyautogui模块
pyautogui模块 PyAutoGUI--让所有GUI都自动化 安装代码: pip install pyautogui 目的 PyAutoGUI是一个纯Python的GUI自动化工具,其目的是可以 ...
- java语言进阶(六)_线程_同步
第一章 多线程 想要设计一个程序,边打游戏边听歌,怎么设计? 要解决上述问题,需要使用多进程或者多线程来解决. 1.1 并发与并行 并发:指两个或多个事件在同一个时间段内发生. 并行:指两个或多个事件 ...
- 每日一题 - 剑指 Offer 30. 包含min函数的栈
题目信息 时间: 2019-06-24 题目链接:Leetcode tag:栈 难易程度:简单 题目描述: 定义栈的数据结构,请在该类型中实现一个能够得到栈的最小元素的 min 函数在该栈中,调用 m ...
- HDU 3911 Black and White (线段树,区间翻转)
[题目地址] vjudge HDU [题目大意] 海滩上有一堆石头. 石头的颜色是白色或黑色. 小肥羊拥有魔术刷,她可以改变连续石的颜色,从黑变白,从白变黑. 小肥羊非常喜欢黑色,因此她想知道范围 ...
- centos7-解决vim无法找到问题
vim编辑器是Linux中的强大组件,是vi编辑器的加强版 在Linux命令行输入vim时提示:-bash:vim:common not found,之后按着查询到的解决办法整好了: 解决步骤如下 ...