LINK:聪聪与可可

这道题的核心是 想到如何统计答案。

如果设f[i][j]表示第i个时刻... 可以发现还需要统计位置信息 以及上一次到底被抓到没有的东西 不太好做。

两者的位置都在变化 所以需要设出状态 f[i][j]表示第聪聪在i位置 可可在j位置的期望步数。

容易想到转移. i==j->0 j是i的下一步或者下下一步 期望为1.

由于聪聪的走位是固定的 所以 设其走两步的位置为 w 而可可是随机的 所以只需要枚举一下可可的转移即可。

由于状态的无序转移性 所以需要记忆化搜索。非常有趣。

值得一提的是 预处理j的下一步位置 需要使用迪杰斯特拉 这样复杂度是n^2log的。

const int MAXN=1010;
int n,m,len,S,T;
db f[MAXN][MAXN];
int ne[MAXN][MAXN],a[MAXN][MAXN];
int dis[MAXN],vis[MAXN],du[MAXN],mark[MAXN][MAXN];
int lin[MAXN],ver[MAXN<<1],nex[MAXN<<1];
priority_queue<pii>q;
inline void add(int x,int y)
{
ver[++len]=y;
nex[len]=lin[x];
lin[x]=len;
++du[y];
}
inline db dfs(int x,int y)
{
if(mark[x][y])return f[x][y];
mark[x][y]=1;
if(x==y)return f[x][y]=0;
if(ne[x][y]==y||ne[ne[x][y]][y]==y)return f[x][y]=1;
int w=ne[ne[x][y]][y];
++f[x][y];
go(y)f[x][y]+=1.0/du[y]*dfs(w,tn);
f[x][y]+=1.0/du[y]*dfs(w,y);
return f[x][y];
}
inline void dij(int s)
{
for(int i=1;i<=n;++i)dis[i]=INF;
q.push(mk(0,s));
dis[s]=0;
while(q.size())
{
int x=q.top().S;
q.pop();
if(vis[x])continue;
vis[x]=1;
for(int i=lin[x];i;i=nex[i])
{
int tn=ver[i];
if(dis[tn]>dis[x]+1)
{
dis[tn]=dis[x]+1;
q.push(mk(-dis[tn],tn));
}
}
}
}
int main()
{
freopen("1.in","r",stdin);
get(n);get(m);
get(S);get(T);
rep(1,m,i)
{
int x,y;
get(x);get(y);
add(x,y);add(y,x);
}
rep(1,n,i)
{
dij(i);++du[i];
rep(1,n,j)a[i][j]=dis[j],vis[j]=0;
}
rep(1,n,i)rep(1,n,j)
{
int maxx=INF,p=0;
for(int k=lin[i];k;k=nex[k])
{
int tn=ver[k];
if(a[j][tn]==maxx)p=min(p,tn);
if(a[j][tn]<maxx)maxx=a[j][tn],p=tn;
}
ne[i][j]=p;
}
printf("%.3lf",dfs(S,T));
return 0;
}

luogu P4206 [NOI2005]聪聪与可可 期望dp 记忆化搜索的更多相关文章

  1. 【BZOJ】1415 [Noi2005]聪聪和可可 期望DP+记忆化搜索

    [题意]给定无向图,聪聪和可可各自位于一点,可可每单位时间随机向周围走一步或停留,聪聪每单位时间追两步(先走),问追到可可的期望时间.n<=1000. [算法]期望DP+记忆化搜索 [题解]首先 ...

  2. bzoj 1415: [Noi2005]聪聪和可可 期望dp+记忆化搜索

    期望dp水题~ 你发现每一次肯定是贪心走 2 步,(只走一步的话就可能出现环) 然后令 $f[i][j]$ 表示聪在 $i$,可在 $j$,且聪先手两个人碰上面的期望最小次数. 用记忆化搜索转移就行了 ...

  3. 洛谷4206/NOI2005T4 聪聪和可可 期望DP+记忆化搜索

    题意:给出n个点m条边的无向图,两个主角聪聪和可可开始分别在S点和T点.聪聪想吃掉可可,每次由匆匆先行动后来可可行动.聪聪的行动是选他到可可的最短路上的点走最多两步(如果最短路有几条就选编号最小的走) ...

  4. BZOJ1415 [Noi2005]聪聪和可可 【SPFA + 期望dp记忆化搜索】

    题目 输入格式 数据的第1行为两个整数N和E,以空格分隔,分别表示森林中的景点数和连接相邻景点的路的条数. 第2行包含两个整数C和M,以空格分隔,分别表示初始时聪聪和可可所在的景点的编号. 接下来E行 ...

  5. [CH3803] 扑克牌 (期望DP+记忆化搜索)

    [题目链接] [CH3803] 扑克牌 [题面描述] \(54\)张牌,每次随机摸一张,求得到 A张黑桃 B张红桃 C张梅花 D张方块 的期望步数.特别地,大王和小王可以当做任意一种花色,当然,会选择 ...

  6. bzoj 1415 期望dp + 记忆化搜索

    思路:这个题看着感觉不能dp,其实是可以dp的,因为狼每次走两步,兔子每次走一步,每进行一轮以后,狼和兔子的距离 肯定是在接近的,没有相同的状态,dp之前预处理出来,每一步狼该往哪里走. #inclu ...

  7. 【BZOJ 1415】 1415: [Noi2005]聪聪和可可 (bfs+记忆化搜索+期望)

    1415: [Noi2005]聪聪和可可 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1640  Solved: 962 Description I ...

  8. luogu P2657 [SCOI2009]windy数 数位dp 记忆化搜索

    题目链接 luogu P2657 [SCOI2009]windy数 题解 我有了一种所有数位dp都能用记忆话搜索水的错觉 代码 #include<cstdio> #include<a ...

  9. TSP+期望——lightoj1287记忆化搜索,好题!

    感觉是很经典的题 记忆化时因为不好直接通过E判断某个状态是否已经求过,所以再加一个vis打标记即可 /*E[S][u]表示从u出发当前状态是S的期望*/ #include<bits/stdc++ ...

随机推荐

  1. Let's GO(四)

    人生苦短,Let's GO Let's GO(一) Let's GO(二) Let's GO(三) Let's GO(四) 今天我学了什么? 1.panic && recover Go ...

  2. Scala 基础(十六):泛型、类型约束-上界(Upper Bounds)/下界(lower bounds)、视图界定(View bounds)、上下文界定(Context bounds)、协变、逆变和不变

    1 泛型 1)如果我们要求函数的参数可以接受任意类型.可以使用泛型,这个类型可以代表任意的数据类型. 2)例如 List,在创建 List 时,可以传入整型.字符串.浮点数等等任意类型.那是因为 Li ...

  3. 数据可视化之DAX篇(二十二)一文搞懂Power BI中的排名问题

    https://zhuanlan.zhihu.com/p/68384001 本文聊聊在PowerBI中如何进行各种类型的排名问题. PowerBI中计算排名主要使用RANKX函数,关于该函数的具体语法 ...

  4. 一个例子理解c++函数模板的编译

    一.例子 template <typename T> inline void callWithMax(const T& a, const T& b){ f(a > b ...

  5. nodejs之EventEmitter实现

    Node.js 所有的异步 I/O 操作在完成时都会发送一个事件到事件队列. Node.js 里面的许多对象都会分发事件:一个 net.Server 对象会在每次有新连接时触发一个事件, 一个 fs. ...

  6. window下远程连接redis服务

    首先下redis包: 下载地址:https://github.com/MSOpenTech/redis/releases. 之后: 1.注释掉redis.windows-service.conf 中的 ...

  7. javascript : 复杂数据结构拷贝实验

    数组深拷贝看起来很简单. array.concat()就行了. 但是,如果数组里有对象呢? 实际上,你以为你拷贝了对象,但实际上你只拷贝了对象的引用(指针)! 我们可以做个试验. // test le ...

  8. 详解Vue大护法——组件

    1.什么是组件化 人面对复杂问题的处理方式: 任何一个人处理信息的逻辑能力都是有限的 所以,当面对一个非常复杂的问题时,我们不太可能一次性搞定一大堆的内容. 但是,我们人有一种天生的能力,就是将问题进 ...

  9. final总结

    final 1.类 不含任何子类,有父类(太监类):其中方法不能覆盖重写. 2.方法 最终方法,不能被覆盖重写. 3.局部变量 赋值后不能改变,只能赋一次值. 4.成员变量 <1>由于成员 ...

  10. static关键字和final关键字

    static关键字和final关键字 static(静态) 作用 用来修饰属性.方法.代码块.内部类 static修饰属性 表示静态变量(类变量) 按是否使用static修饰,属性的分类 静态属性 当 ...