pandas模块为我们提供了非常多的描述性统计分析的指标函数,如总和、均值、最小值、最大值等,我们来具体看看这些函数:

1、随机生成三组数据
import numpy as np
import pandas as pd

np.random.seed(1234)
d1 = pd.Series(2*np.random.normal(size = 100)+3)
d2 = np.random.f(2,4,size = 100)
d3 = np.random.randint(1,100,size = 100)
1
2
3
4
5
6
7
2、统计分析用到的函数
d1.count() #非空元素计算
d1.min() #最小值
d1.max() #最大值
d1.idxmin() #最小值的位置,类似于R中的which.min函数
d1.idxmax() #最大值的位置,类似于R中的which.max函数
d1.quantile(0.1) #10%分位数
d1.sum() #求和
d1.mean() #均值
d1.median() #中位数
d1.mode() #众数
d1.var() #方差
d1.std() #标准差
d1.mad() #平均绝对偏差
d1.skew() #偏度
d1.kurt() #峰度
d1.describe() #一次性输出多个描述性统计指标
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
必须注意的是,descirbe方法只能针对序列或数据框,一维数组是没有这个方法的
自定义一个函数,将这些统计指标汇总在一起:

def status(x) :
return pd.Series([x.count(),x.min(),x.idxmin(),x.quantile(.25),x.median(),
x.quantile(.75),x.mean(),x.max(),x.idxmax(),x.mad(),x.var(),
x.std(),x.skew(),x.kurt()],index=['总数','最小值','最小值位置','25%分位数',
'中位数','75%分位数','均值','最大值','最大值位数','平均绝对偏差','方差','标准差','偏度','峰度'])
1
2
3
4
5
执行该函数,查看一下d1数据集的这些统计函数值:

df = pd.DataFrame(status(d1))
df
1
2
结果:

在实际的工作中,我们可能需要处理的是一系列的数值型数据框,如何将这个函数应用到数据框中的每一列呢?可以使用apply函数,这个非常类似于R中的apply的应用方法。
将之前创建的d1,d2,d3数据构建数据框:

df = pd.DataFrame(np.array([d1,d2,d3]).T, columns=['x1','x2','x3'])
df.head()

df.apply(status)
1
2
3
4
结果:

3、加载CSV数据
import numpy as np
import pandas as pd

bank = pd.read_csv("D://bank/bank-additional-train.csv")
bank.head() #查看前5行
1
2
3
4
5

描述性统计1:describe()
result = bank['age'].describe()
pd.DataFrame(result ) #格式化成DataFrame
1
2

描述性统计2:describe(include=[‘number’])
include中填写的是数据类型,若想查看所有数据的统计数据,则可填写object,即include=['object'];若想查看float类型的数据,则为include=['float']。
1
result = bank.describe(include=['object'])
1

含义:

count:指定字段的非空总数。
unique:该字段中保存的值类型数量,比如性别列保存了男、女两种值,则unique值则为2。
top:数量最多的值。
freq:数量最多的值的总数。
bank.describe(include=['number'])
1

连续变量的相关系数(corr)
bank.corr()
1

协方差矩阵(cov)
bank.cov()
1

删除列
bank.drop('job', axis=1) #删除年龄列,axis=1必不可少
1
排序
bank.sort_values(by=['job','age']) #根据工作、年龄升序排序
bank.sort_values(by=['job','age'], ascending=False) #根据工作、年龄降序排序
1
2
多表连接
准备数据:
import numpy as np
import pandas as pd

student = {'Name':['Bob','Alice','Carol','Henry','Judy','Robert','William'],
'Age':[12,16,13,11,14,15,24],
'Sex':['M','F','M','M','F','M','F']}

score = {'Name':['Bob','Alice','Carol','Henry','William'],
'Score':[75,35,87,86,57]}

df_student = pd.DataFrame(student)
df_student

df_score = pd.DataFrame(score)
df_score
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
student:

score:

内连接
stu_score1 = pd.merge(df_student, df_score, on='Name')
stu_score1
1
2
注意,默认情况下,merge函数实现的是两个表之间的内连接,即返回两张表中共同部分的数据。可以通过how参数设置连接的方式,left为左连接;right为右连接;outer为外连接。

左连接
stu_score2 = pd.merge(df_student, df_score, on='Name',how='left')
stu_score2
1
2

左连接中,没有Score的学生Score为NaN
缺失值处理
现实生活中的数据是非常杂乱的,其中缺失值也是非常常见的,对于缺失值的存在可能会影响到后期的数据分析或挖掘工作,那么我们该如何处理这些缺失值呢?常用的有三大类方法,即删除法、填补法和插值法。

删除法
当数据中的某个变量大部分值都是缺失值,可以考虑删除改变量;当缺失值是随机分布的,且缺失的数量并不是很多是,也可以删除这些缺失的观测。

替补法
对于连续型变量,如果变量的分布近似或就是正态分布的话,可以用均值替代那些缺失值;如果变量是有偏的,可以使用中位数来代替那些缺失值;对于离散型变量,我们一般用众数去替换那些存在缺失的观测。

插补法
插补法是基于蒙特卡洛模拟法,结合线性模型、广义线性模型、决策树等方法计算出来的预测值替换缺失值。

此处测试使用上面学生成绩数据进行处理
查询某一字段数据为空的数量
sum(pd.isnull(stu_score2['Score']))
结果:2
1
2
直接删除缺失值
stu_score2.dropna()
1
删除前:

删除后:

默认情况下,dropna会删除任何含有缺失值的行
删除所有行为缺失值的数据
import numpy as np
import pandas as pd

df = pd.DataFrame([[1,2,3],[3,4,np.nan],
[12,23,43],[55,np.nan,10],
[np.nan,np.nan,np.nan],[np.nan,1,2]],
columns=['a1','a2','a3'])
1
2
3
4
5
6
7

df.dropna() #该操作会删除所有有缺失值的行数据
1

df.dropna(how='all') #该操作仅会删除所有列均为缺失值的行数据
1

填充数据
使用一个常量来填补缺失值,可以使用fillna函数实现简单的填补工作:

1、用0填补所有缺失值
df.fillna(0)
1

2、采用前项填充或后向填充
df.fillna(method='ffill') #用前一个值填充
1

df.fillna(method='bfill') #用后一个值填充
1

3、使用常量填充不同的列
df.fillna({'a1':100,'a2':200,'a3':300})
1

4、用均值或中位数填充各自的列
a1_median = df['a1'].median() #计算a1列的中位数
a1_median=7.5

a2_mean = df['a2'].mean() #计算a2列的均值
a2_mean = 7.5

a3_mean = df['a3'].mean() #计算a3列的均值
a3_mean = 14.5

df.fillna({'a1':a1_median,'a2':a2_mean,'a3':a3_mean}) #填充值
1
2
3
4
5
6
7
8
9
10

很显然,在使用填充法时,相对于常数填充或前项、后项填充,使用各列的众数、均值或中位数填充要更加合理一点,这也是工作中常用的一个快捷手段。
数据打乱(shuffle)
实际工作中,经常会碰到多个DataFrame合并后希望将数据进行打乱。在pandas中有sample函数可以实现这个操作。

df = df.sample(frac=1)
1
这样对可以对df进行shuffle。其中参数frac是要返回的比例,比如df中有10行数据,我只想返回其中的30%,那么frac=0.3。
有时候,我们可能需要打混后数据集的index(索引)还是按照正常的排序。我们只需要这样操作

df = df.sample(frac=1).reset_index(drop=True)
————————————————
版权声明:本文为CSDN博主「T_白日梦想家」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/A632189007/java/article/details/76176985

转载,Pandas 数据统计用法的更多相关文章

  1. [py]pandas数据统计学习

    pandas.core.base.DataError: No numeric types to aggregate错误规避 我没有去解决这个问题, 而用填充0规避了这个问题 统计 聚合 d = [ { ...

  2. pandas数据统计

    1 count() 非空观测数量 2 sum() 所有值之和 3 mean() 所有值的平均值 4 median() 所有值的中位数 5 mode() 值的模值 6 std() 值的标准偏差 7 mi ...

  3. pandas数据框,统计某列或者某行数据元素的个数

    版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明.本文链接:https://blog.csdn.net/sinat_38893241/articl ...

  4. 【转载】国内网站博客数据统计选免费Google Analytics还是百度统计

    [转载]国内网站博客数据统计选免费Google Analytics还是百度统计 Google Analytics谷歌统计是我用的第一个网站统计工具,当然现在也一直在用.Google Analytics ...

  5. shell编程系列21--文本处理三剑客之awk中数组的用法及模拟生产环境数据统计

    shell编程系列21--文本处理三剑客之awk中数组的用法及模拟生产环境数据统计 shell中的数组的用法: shell数组中的下标是从0开始的 array=("Allen" & ...

  6. 有关“数据统计”的一些概念 -- PV UV VV IP跳出率等

    有关"数据统计"的一些概念 -- PV UV VV IP跳出率等 版权声明:本文为博主原创文章,未经博主允许不得转载. 此文是本人工作中碰到的,随时记下来的零散概念,特此整理一下. ...

  7. PHP+Mysql+jQuery实现地图区域数据统计-展示数据

    我们要在地图上有限的区块内展示更多的信息,更好的办法是通过地图交互来实现.本文将给大家讲解通过鼠标滑动到地图指定省份区域,在弹出的提示框中显示对应省份的数据信息.适用于数据统计和地图区块展示等场景. ...

  8. python数据统计,总数,平均值等

    一般我们进行数据统计的时候要进行数据摸查,可能是摸查整体的分布情况啊.平均值,标准差,总数,各分段的人数啊.这时候用excel或者数据库统计都不方便. 我要统计的一个文件,太大了,还得分成15个文件, ...

  9. 在Sqlserver下巧用行列转换日期的数据统计

    在Sqlserver下巧用行列转换日期的数据统计 前言 在SQLSERVER 中有很多统计函数的基础语法,有使用Group By 或 partition by 后配合Sum,Count(*) 等用法. ...

随机推荐

  1. C# 9 新特性 —— 补充篇

    C# 9 新特性 -- 补充篇 Intro 前面我们分别介绍了一些 C# 9 中的新特性,还有一些我觉得需要了解一下的新特性,写一篇作为补充. Top-Level Statements 在以往的代码里 ...

  2. 一文讲尽门面日志slf4j和log4j、log4j2、logback依赖jar引用关系

    公众号Mac代码分割阅读链接 前言 之前都是使用SparkStreaming开发,最近打算学习一下Flink,就从官网下载了Flink 1.11,打算搞一个客户端,将程序提交在yarn上.因为Flin ...

  3. 在onelogin中使用OpenId Connect Implicit Flow

    目录 简介 OpenId Implicit Flow 创建onelogin的配置 页面的运行和请求流程 关键代码 总结 简介 onelogin支持多种OpenId Connect的连接模式,上一篇文章 ...

  4. Spring(2) --Bean相关

    你对Spring中的bean了解吗?都有哪些作用域(Scope)? Spring 官方文档对 bean 的解释是: In Spring, the objects that form the backb ...

  5. Java 中泛型的实现原理

    泛型是 Java 开发中常用的技术,了解泛型的几种形式和实现泛型的基本原理,有助于写出更优质的代码.本文总结了 Java 泛型的三种形式以及泛型实现原理. 泛型 泛型的本质是对类型进行参数化,在代码逻 ...

  6. Thread线程源码解析,Java线程的状态,线程之间的通信

    线程的基本概念 什么是线程 现代操作系统在运行一个程序的时候,会为其创建一个进程.例如,启动一个Java程序,操作系统就会创建一个Java进程.线代操作系统调度的最小单位是线程.也叫做轻量级进程.在一 ...

  7. Ubuntu 18.04.4 LTS 更换国内系统源

    Ubuntu 18.04.4 LTS 更换国内系统源 1.1) 好习惯先做备份在干活: mv /etc/apt/sources.list /etc/apt/sources.list.bak 1.2) ...

  8. 【Linux】Linux系统dev/目录下的tty

    终端是一种字符型设备,它有多种类型,通常使用tty来简称各种类型的终端设备.tty是Teletype的缩写.Teletype是最早出现的一种终端设备,很象电传打字机(或者说就是),是由Teletyp ...

  9. KeepAlive安装以及简单配置

    操作系统:Centos7.3 一.依赖安装 首先安装相关依赖: yum install -y gcc openssl-devel popt-devel yum -y install libnl lib ...

  10. wmic 查看主板信息

    查看主板信息的一个命令:wmic baseboard get 当然在命令提示符里查看,真的很费劲,所以我们将命令格式化一下:wmic baseboard get /format:HFORM >c ...