对于以定投指数的方式理财的朋友,最需要关注的指标便是各个指数的估值,在指数低估时买入,高估时卖出,那如何制作一张估值图来跟踪指数的估值情况呢?本文就从0到1介绍如何用 Matplotlib 画一张漂亮的指数估值图。

准备数据

首先,准备我们需要的数据,一般来说,经历了一轮牛熊周期的历史估值更具比较意义,所以,这里以上证指数2013年到目前为止的行情数据为例进行演示,同时,采用滚动市盈率为估值指标。数据来源为tushare。

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import tushare as ts
from datetime import *
%matplotlib inline
#设置显示中文
plt.rcParams['font.sans-serif'] = 'FangSong' pro = ts.pro_api() index_df = pro.index_dailybasic(ts_code = "000001.SH",start_date = "20130101",
end_date = "20200311",fields="trade_date,pe_ttm")
index_df.sort_values(by="trade_date",inplace=True)
x = pd.to_datetime(index_df["trade_date"]).values
y = index_df["pe_ttm"].values

根据得到的数据,可以绘制出上证指数市盈率的走势图:

fig,ax = plt.subplots(figsize=(12,8))
ax.plot(x,y)

接下来便需要根据一定的规则,将估值划分为高估区、正常区以及低估区。

估值区间划分

参照比较常见的划分方法,本文将大于80%分位数的区域视为高估区间,低于20%分位数的区域视为低估区间,位于两者之间的,则为正常区间。下面的代码算出了这几个关键数据点

max = np.max(y)
pe_80 = np.percentile(y,80)
pe_20 = np.percentile(y,20)
min = np.min(y)
now = y[-1] #为了后续标出当日估值

绘图

根据分割的数据点,就可以进行绘图了,这里主要用到 fill_between 函数绘制各区域的颜色分割,将高估区域用红色块填充,正常区间用黄色块填充,低估值区域用绿色块填充。同时为了显示效果,将图的上下限分别设置为最大值+1和最小值-1。

fig,ax = plt.subplots(figsize=(12,8))
ax.plot(x,y,linewidth=3)
ax.fill_between(x,min-1,pe_20,facecolor = "#00ff80",alpha=0.2)
ax.fill_between(x,pe_20,pe_80,facecolor = "#ffff4d",alpha=0.2)
ax.fill_between(x,pe_80,max+1,facecolor = "#ff69b4",alpha=0.2)

整个图形的大致轮廓已经出来了,为了更好的显示效果,接下来还需要对图形进行微调。比如:

  • 去掉坐标轴的刻度并将相应字体放大--> ax.tick_params()
  • 去掉图形与坐标轴之间的空白--> ax.margins()
  • 在图中标出当日市盈率--> ax.text()
  • 将图形的方框去掉--> plt.box()
  • 为图标添加标题--> plt.title

所以,在之前代码的基础上,加入下面的调整代码,就可以得到最终的成品图

fig,ax = plt.subplots(figsize=(12,8))
ax.plot(x,y,linewidth=3)
ax.fill_between(x,min-1,pe_20,facecolor = "#00ff80",alpha=0.2)
ax.fill_between(x,pe_20,pe_80,facecolor = "#ffff4d",alpha=0.2)
ax.fill_between(x,pe_80,max+1,facecolor = "#ff69b4",alpha=0.2)
ax.tick_params(axis='both', which='both',length=0)
ax.tick_params(axis='both', which='major', labelsize=16)
ax.margins(0.01,0)
ax.text(0.75,0.9,"市盈率 = {}".format(now),transform=ax.transAxes,fontdict={'size':18})
plt.xticks(rotation=45)
plt.box(False)
plt.title("上证指数估值图",fontdict={'size':24})

函数封装

进一步地,为了将上面的代码复用,可以将所有绘图的代码封装成函数,之后只需要输入相应的指数代码(可以值宽基指数、行业板块指数)和时间范围,即可快速生成一张估值图。

def pe_plot(ts_code = "",name="",period=5):
#准备数据
now = datetime.now()
end_date = str(now.date()).replace("-","")
start_date = str(now.year-period)+end_date[4:]
index_df = pro.index_dailybasic(ts_code = ts_code,start_date = start_date,
end_date = end_date,fields="trade_date,pe_ttm")
index_df.sort_values(by="trade_date",inplace=True)
x = pd.to_datetime(index_df["trade_date"]).values
y = index_df["pe_ttm"].values #划定分割范围
max = np.max(y)
pe_80 = np.percentile(y,80)
pe_20 = np.percentile(y,20)
min = np.min(y)
now = y[-1] #绘图
fig,ax = plt.subplots(figsize=(12,8))
ax.plot(x,y,linewidth=3)
ax.fill_between(x,min-1,pe_20,facecolor = "#00ff80",alpha=0.2)
ax.fill_between(x,pe_20,pe_80,facecolor = "#ffff4d",alpha=0.2)
ax.fill_between(x,pe_80,max+1,facecolor = "#ff69b4",alpha=0.2)
ax.tick_params(axis='both', which='both',length=0)
ax.tick_params(axis='both', which='major', labelsize=16)
ax.margins(0.01,0)
ax.text(0.75,0.9,"市盈率 = {}".format(now),
transform=ax.transAxes,fontdict={'size':18})
plt.xticks(rotation=45)
plt.box(False)
plt.title("{}估值图".format(name),fontdict={'size':24})
plt.show()

比如,生成一张创业板指数近5年的估值图

pe_plot(ts_code="399006.SZ",name="创业板指",period=5)

交流基地:630390733

怎样用Python自制好看的指数估值图的更多相关文章

  1. Python的网络编程--思维导图

    Python的网络编程--思维导图

  2. python逆向工程:通过代码生成类图

    python逆向工程:通过代码生成类图 大致过程 现在有一个core包,里面有python的代码. 通过core包,生成python的类图,如下: 实施步骤: 1.首先安装graphviz,一个画图工 ...

  3. 使用JavaScript制作一个好看的轮播图

    目录 使用JavaScript制作出好看的轮播图效果 准备材料 1.图片若干张(包括轮播图和按钮的图片) 2.将按钮的图片应用到按钮上的CSS样式文件 3.实现轮播和点击跳转的JavaScript代码 ...

  4. 用Python 绘制分布(折线)图

    用Python 绘制分布(折线)图,使用的是 plot()函数. 一个简单的例子: # encoding=utf-8 import matplotlib.pyplot as plt from pyla ...

  5. python编写微信公众号首图思路详解

    前言 之前一直在美图秀秀调整自己的微信公众号首图,效果也不尽如人意,老是调来调去,最后发出来的图片被裁剪了一大部分,丢失部分关键信息,十分恼火,于是想着用python写一个程序,把微信公众号首图的模式 ...

  6. 跟我学Python图像处理丨基于灰度三维图的图像顶帽运算和黑帽运算

    摘要:本篇文章结合灰度三维图像讲解图像顶帽运算和图像黑猫运算,通过Python调用OpenCV函数实现. 本文分享自华为云社区<[Python图像处理] 十三.基于灰度三维图的图像顶帽运算和黑帽 ...

  7. 用python自制微信机器人,定时发送天气预报

    0 引言 前段时间找到了一个免费的天气预报API,费了好段时间把这个API解析并组装成自己想用的格式了,就想着如何实现每天发送天气信息给自己.最近无意中发现了wxpy库,用它来做再合适不过了.以下是w ...

  8. Python分析世界幸福指数

    前言 民意测验机构盖洛普从2012年起,每年都会在联合国计划下发布<世界幸福指数报告>,报告会综合两年内150多个国家的国民对其所处社会.城市和自然环境等因素进行评价后,再根据他们所感知的 ...

  9. Python自制微信机器人:群发消息、自动接收好友

    运营公众号也有半年了,今年5月份开始的,之前一直用一款windows工具来运营自动接受好友请求.群发文章.自动回复等操作,但颇有不便. 举几个场景: 突然在外面看到一篇文章很好,临时写了一篇,想群发一 ...

随机推荐

  1. python+selenium通过加载用户配置实现免登陆

    1查看profile路径 在Chrome地址栏访问chrome://version,可以查看个人资料存储位置: 2 python代码如下: from selenium import webdriver ...

  2. 【P1588】丢失的牛——区间dp/bfs

    (题面来自Luogu) 题目描述 FJ丢失了他的一头牛,他决定追回他的牛.已知FJ和牛在一条直线上,初始位置分别为x和y,假定牛在原地不动.FJ的行走方式很特别:他每一次可以前进一步.后退一步或者直接 ...

  3. LaTeX相关自学文档

    install-latex-guide-zh-cn: lshort-zh-cn: 百度网盘链接:https://pan.baidu.com/s/1cBv9Fu8KFaf0QFZ7_slxmw 提取码: ...

  4. mfc c++优化

    1.不住求精度时,尽量使用单精度浮点型2.使用32位数据类型3.使用有符号和无符号整型: 前提:无需考虑正负时 double x; int i; x = i; 使用有符号:unsigned int i ...

  5. Django 在test.py 中测试文件的配置

    import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTING ...

  6. 发现了一个关于 gin 1.3.0 框架的 bug

    gin 1.3.0 框架 http 响应数据错乱问题排查 问题概述 客户端同时发起多个http请求,gin接受到请求后,其中一个接口响应内容为空,另外一个接口响应内容包含接口1,接口2的响应内容,导致 ...

  7. JZOJ 11.14 提高B组反思

    JZOJ 11.14 提高B组反思 T1 题目虽然有点高大上,但是很容易懂 有一个\(d\)维空间,同时有一个长度为\(2n\)的操作序列,每个操作往某一维的正方向或反方向走一格,问多少种方案使得最后 ...

  8. Linux之【安装系统后的调优和安全设置】

    关闭SElinux功能 •修改配置文件使其永远生效 第一种修改方法vi vi /etc/sysconfig/selinuc 或者 vi /etc/selinux/config修改: SELINUX=d ...

  9. day7(vue发送短信)

    1.vue发送短信逻辑 前端函数如下,js方法代码无需更改,前端代码逻辑在components\common\lab_header.vue 只需要修改components\axios_api\http ...

  10. TextClip的list和search方法报错:UnicodeDecodeError: utf-8 codec canot decode byte 0xb7 in position 8

    ☞ ░ 前往老猿Python博文目录 ░ 由于moviepy对多语言环境支持存在一些问题,因此在执行TextClip.list('font')和TextClip.search('GB','font') ...