ZJOI2008 骑士(树型DP)
ZJOI2008 骑士
题目大意
给出n个人的战斗力和每个人讨厌的人,然后问最大能有多大的战斗力
solution
简单粗暴的题意,有一丢丢背包的感觉
那敢情就是DP了
有点像没有上司的舞会,,,
根据题意,骑士之间互相厌恶会形成一个环,任务就是找到这个环并且把它断开,然后对断开的两个端点分别求答案,然后取最优结果
设定当前点为u
断开的两个节点是u1和u2
选取当前点的状态记为1,不选的话就是0
那么数组就是dp[u][0],dp[u][1]
从这两个中间取最大值即可
最后将所有的DP值加和就是结果了
第一眼应为想到要找环,所以本来打算写Tarjan判连通块
然后去blogs验证思路的时候发现好像并不需要
用到了一个神奇的东东——拓扑排序
判环,拆分,统计入度和出度
求和得到结果即可
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
using namespace std;
inline int read(){
int x = 0, w = 1;
char ch = getchar();
for(; ch > '9' || ch < '0'; ch = getchar()) if(ch == '-') w = -1;
for(; ch >= '0' && ch <= '9'; ch = getchar()) x = x * 10 + ch - '0';
return x * w;
}
const int N = 1000000 + 10;
int head[N], cnt = 1, size[N], r1, r2,p[N];
struct Edge {
int to, next;
} edges[N << 1];
bool vis[N], flag;
long long ans, f[N][2];
inline void add(int x, int y) {
edges[++cnt].next = head[x];
edges[cnt].to = y;
head[x] = cnt;
}
inline void dfs(int x, int fa) {
vis[x] = 1;
size[++size[0]] = x;
for (int i = head[x]; i; i = edges[i].next) {
int v = edges[i].to;
if (v == fa) continue;
if (!vis[v]) dfs(v, x);
else if (vis[v] && !flag) {
flag = true;
r1 = x, r2 = v;
}
}
}
inline void dfs2(int x, int fa) {
f[x][0] = 0;
f[x][1] = p[x];
for (int i = head[x]; i; i = edges[i].next) {
int v = edges[i].to;
if (v && v != fa) {
dfs2(v, x);
f[x][1] += f[v][0];
f[x][0] += max(f[v][0], f[v][1]);
}
}
}
inline void solve() {
if (!flag) {
int root = size[1];
dfs2(root, -1);
ans += max(f[root][0], f[root][1]);
} else {
long long maxv = -100;
for (int i = head[r1]; i; i = edges[i].next) {
if (edges[i].to == r2) {
edges[i].to = 0;
edges[i ^ 1].to = 0;
break;
}
}
dfs2(r1, -1);
maxv = max(maxv, f[r1][0]);
dfs2(r2, -1);
maxv = max(maxv, f[r2][0]);
ans += maxv;
}
}
int n;
int main() {
n = read();
int x, y;
for (int i = 1; i <= n; i++){
p[i] = read();
x = read();
add(x, i);
add(i, x);
}
for (int i = 1; i <= n; i++) {
if (!vis[i]) {
size[0] = 0;
flag = false;
dfs(i, -1);
solve();
}
}
printf("%lld", ans);
return 0;
}
ZJOI2008 骑士(树型DP)的更多相关文章
- BZOJ1040: [ZJOI2008]骑士 树套环DP
题意:一个图n个点n条边保证点能互相到达,ab有边意味着ab互相厌恶,求一个集合,使得集合里元素最多而且没有人互相厌恶 删去环上一条边树形dp,比如删掉的边连着a,b,那么先dp出不选a的最大值,再d ...
- BZOJ_1040_[ZJOI2008]骑士_树形DP
BZOJ_1040_[ZJOI2008]骑士_树形DP 题意: Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各 界的赞扬.最近发生了一件可怕的事情,邪 ...
- POJ3659 Cell Phone Network(树上最小支配集:树型DP)
题目求一棵树的最小支配数. 支配集,即把图的点分成两个集合,所有非支配集内的点都和支配集内的某一点相邻. 听说即使是二分图,最小支配集的求解也是还没多项式算法的.而树上求最小支配集树型DP就OK了. ...
- POJ 3342 - Party at Hali-Bula 树型DP+最优解唯一性判断
好久没写树型dp了...以前都是先找到叶子节点.用队列维护来做的...这次学着vector动态数组+DFS回朔的方法..感觉思路更加的清晰... 关于题目的第一问...能邀请到的最多人数..so ea ...
- 【XSY1905】【XSY2761】新访问计划 二分 树型DP
题目描述 给你一棵树,你要从\(1\)号点出发,经过这棵树的每条边至少一次,最后回到\(1\)号点,经过一条边要花费\(w_i\)的时间. 你还可以乘车,从一个点取另一个点,需要花费\(c\)的时间. ...
- 洛谷P3354 Riv河流 [IOI2005] 树型dp
正解:树型dp 解题报告: 传送门! 简要题意:有棵树,每个节点有个权值w,要求选k个节点,最大化∑dis*w,其中如果某个节点到根的路径上选了别的节点,dis指的是到达那个节点的距离 首先这个一看就 ...
- 【POJ 3140】 Contestants Division(树型dp)
id=3140">[POJ 3140] Contestants Division(树型dp) Time Limit: 2000MS Memory Limit: 65536K Tot ...
- Codeforces 581F Zublicanes and Mumocrates(树型DP)
题目链接 Round 322 Problem F 题意 给定一棵树,保证叶子结点个数为$2$(也就是度数为$1$的结点),现在要把所有的点染色(黑或白) 要求一半叶子结点的颜色为白,一半叶子结点的 ...
- ZOJ 3949 (17th 浙大校赛 B题,树型DP)
题目链接 The 17th Zhejiang University Programming Contest Problem B 题意 给定一棵树,现在要加一条连接$1$(根结点)和$x$的边,求加 ...
- BZOJ 1564 :[NOI2009]二叉查找树(树型DP)
二叉查找树 [题目描述] 已知一棵特殊的二叉查找树.根据定义,该二叉查找树中每个结点的数据值都比它左儿子结点的数据值大,而比它右儿子结点的数据值小. 另一方面,这棵查找树中每个结点都有一个权值,每个结 ...
随机推荐
- TZOJ 车辆拥挤相互往里走
102路公交车是crq经常坐的,闲来无聊,他想知道最高峰时车上有多少人,他发现这辆车只留一个门上下人,于是他想到了一个办法,上车时先数一下车上人员数目(crq所上的站点总是人不太多),之后就坐在车门口 ...
- zabbix 监控 tcp 连接数
一.zabbix-agent 服务器配置 1.编辑zabbix_agent配置文件,添加以下内容 vim /etc/zabbix/zabbix_agentd.conf ##添加此行 UserParam ...
- Android中数据缓存的处理
为了避免重复操作数据库带来的性能问题,可以将数据库中的数据一次性读入到内存中,这样使得对数据查询的操作变得更加高效,但是这样会带来数据同步的问题,所以需要在每次操作完内存中的数据,同步去操作数据库中的 ...
- 问题解决:psql: could not connect to server: No such file or directory Is the server running locally and accepting connections on Unix domain socket "/var/run/postgresql/.s.PGSQL.5432"?
错误提示: psql: could not connect to server: No such file or directory Is the server running locally and ...
- FastJson将Java对象转换成json
确保环境依赖都配置好! 1.在pom.xml导入依赖 <dependency> <groupId>com.alibaba</groupId> <artifac ...
- IAT表
0X0 0 DLL介绍 DLL翻译器为动态链接库,原来不存在DLL的概念只有,库的概念,编译器会把从库中获取的二进制代码插入到应用程序中.在现在windows操作系统使用了数量庞大的库函数(进程,内存 ...
- VMWare的三种网络连接方式
VMWare和主机的三种网络连接方式 桥接 这种模式下,虚拟机通过主机的网卡与主机通信,如果主机能够上网,则虚拟机也能联网. 在虚拟机中,需要将虚拟机的IP配置为与主机处于同一网段. 虚拟机也可以与同 ...
- Android学习笔记StateListDrawable文件
SateListDrawable,可包含一个 Drawable 数组,让目标组件在不同状态显示不同 Drawable.对应的 xml 文件的根节点 示例 edittext_focused.xml &l ...
- jmeter对数据库进行简单的压测
1.点击测试计划,再点击“浏览”,把JDBC驱动添加进来: 注:JDBC驱动一般的位置在java的安装地址下,路径类似于: \java\jre\lib\ext 文件为:mysql-connect ...
- Web api配置填坑攻略
最近开始使用web api,开发调试过程还算顺利,现在项目已经发布,网站已经部署,结果浏览过程出现问题(不出问题好像不正常吧……),做个note开始填坑. 1.1号坑 咋一开始就爆出另一个程序正在使用 ...