Joins https://docs.oracle.com/database/121/TGSQL/tgsql_join.htm#TGSQL242

tidb/index_lookup_hash_join.go at master · pingcap/tidb https://github.com/pingcap/tidb/blob/master/executor/index_lookup_hash_join.go

Hash Join: Basic Steps

The optimizer uses the smaller data source to build a hash table on the join key in memory, and then scans the larger table to find the joined rows.

The basic steps are as follows:

  1. The database performs a full scan of the smaller data set, called the build table, and then applies a hash function to the join key in each row to build a hash table in the PGA.

    In pseudocode, the algorithm might look as follows:

    FOR small_table_row IN (SELECT * FROM small_table)
    LOOP
    slot_number := HASH(small_table_row.join_key);
    INSERT_HASH_TABLE(slot_number,small_table_row);
    END LOOP;
  2. The database probes the second data set, called the probe table, using whichever access mechanism has the lowest cost.

    Typically, the database performs a full scan of both the smaller and larger data set. The algorithm in pseudocode might look as follows:

    FOR large_table_row IN (SELECT * FROM large_table)
    LOOP
    slot_number := HASH(large_table_row.join_key);
    small_table_row = LOOKUP_HASH_TABLE(slot_number,large_table_row.join_key);
    IF small_table_row FOUND
    THEN
    output small_table_row + large_table_row;
    END IF;
    END LOOP;

    For each row retrieved from the larger data set, the database does the following:

    1. Applies the same hash function to the join column or columns to calculate the number of the relevant slot in the hash table.

      For example, to probe the hash table for department ID 30, the database applies the hash function to 30, which generates the hash value 4.

    2. Probes the hash table to determine whether rows exists in the slot.

      If no rows exist, then the database processes the next row in the larger data set. If rows exist, then the database proceeds to the next step.

    3. Checks the join column or columns for a match. If a match occurs, then the database either reports the rows or passes them to the next step in the plan, and then processes the next row in the larger data set.

      If multiple rows exist in the hash table slot, the database walks through the linked list of rows, checking each one. For example, if department 30 hashes to slot 4, then the database checks each row until it finds 30.

Example 9-4 Hash Joins

An application queries the oe.orders and oe.order_items tables, joining on the order_id column.

SELECT o.customer_id, l.unit_price * l.quantity
FROM orders o, order_items l
WHERE l.order_id = o.order_id;

The execution plan is as follows:

--------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|
--------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 665 | 13300 | 8 (25)|
|* 1 | HASH JOIN | | 665 | 13300 | 8 (25)|
| 2 | TABLE ACCESS FULL | ORDERS | 105 | 840 | 4 (25)|
| 3 | TABLE ACCESS FULL | ORDER_ITEMS | 665 | 7980 | 4 (25)|
-------------------------------------------------------------------------- Predicate Information (identified by operation id):
---------------------------------------------------
1 - access("L"."ORDER_ID"="O"."ORDER_ID")

Because the orders table is small relative to the order_items table, which is 6 times larger, the database hashes orders. In a hash join, the data set for the build table always appears first in the list of operations (Step 2). In Step 3, the database performs a full scan of the larger order_items later, probing the hash table for each row.

How Hash Joins Work When the Hash Table Does Not Fit in the PGA

The database must use a different technique when the hash table does not fit entirely in the PGA. In this case, the database uses a temporary space to hold portions (called partitions) of the hash table, and sometimes portions of the larger table that probes the hash table.

The basic process is as follows:

  1. The database performs a full scan of the smaller data set, and then builds an array of hash buckets in both the PGA and on disk.

    When the PGA hash area fills up, the database finds the largest partition within the hash table and writes it to temporary space on disk. The database stores any new row that belongs to this on-disk partition on disk, and all other rows in the PGA. Thus, part of the hash table is in memory and part of it on disk.

  2. The database takes a first pass at reading the other data set.

    For each row, the database does the following:

    1. Applies the same hash function to the join column or columns to calculate the number of the relevant hash bucket.

    2. Probes the hash table to determine whether rows exist in the bucket in memory.

      If the hashed value points to a row in memory, then the database completes the join and returns the row. If the value points to a hash partition on disk, however, then the database stores this row in the temporary tablespace, using the same partitioning scheme used for the original data set.

  3. The database reads each on-disk temporary partition one by one

  4. The database joins each partition row to the row in the corresponding on-disk temporary partition.

Hash Join Controls

The USE_HASH hint instructs the optimizer to use a hash join when joining two tables together.

Hash Join: Basic Steps的更多相关文章

  1. SQL Tuning 基础概述06 - 表的关联方式:Nested Loops Join,Merge Sort Join & Hash Join

    nested loops join(嵌套循环)   驱动表返回几条结果集,被驱动表访问多少次,有驱动顺序,无须排序,无任何限制. 驱动表限制条件有索引,被驱动表连接条件有索引. hints:use_n ...

  2. Sort merge join、Nested loops、Hash join(三种连接类型)

    目前为止,典型的连接类型有3种: Sort merge join(SMJ排序-合并连接):首先生产driving table需要的数据,然后对这些数据按照连接操作关联列进行排序:然后生产probed ...

  3. 视图合并、hash join连接列数据分布不均匀引发的惨案

    表大小 SQL> select count(*) from agent.TB_AGENT_INFO; COUNT(*) ---------- 1751 SQL> select count( ...

  4. 最新电Call记录统计-full hash join用法

    declare @time datetime set @time='2016-07-01' --最新的电Call记录统计查询--SELECT t.zuoxi1,t.PhoneCount,t.Phone ...

  5. Sql优化(一) Merge Join vs. Hash Join vs. Nested Loop

    原创文章,首发自本人个人博客站点,转载请务必注明出自http://www.jasongj.com Nested Loop,Hash Join,Merge Join介绍 Nested Loop: 对于被 ...

  6. Oracle 表的连接方式(2)-----HASH JOIN的基本机制3

    HASH JOIN的模式 hash join有三种工作模式,分别是optimal模式,onepass模式和multipass模式,分别在v$sysstat里面有对应的统计信息: SQL> sel ...

  7. Oracle 表的连接方式(2)-----HASH JOIN的基本机制2

    Hash算法原理 对于什么是Hash算法原理?这个问题有点难度,不是很好说清楚,来做一个比喻吧:我们有很多的小猪,每个的体重都不一样,假设体重分布比较平均(我们考虑到公斤级别),我们按照体重来分,划分 ...

  8. Oracle 表的连接方式(2)-----HASH JOIN的基本机制1

    我们对hash join的常见误解,一般包括两个: 第一个误解:是我们经常以为hash join需要对两个做join的表都做全表扫描 第二个误解:是经常以为hash join会选择比较小的表做buil ...

  9. SQL Server的三种物理连接之Hash Join(三)

    简介 在 SQL Server 2012 在一些特殊的例子下会看到下面的图标: Hash Join分为两个阶段,分别为生成和探测阶段. 首先是生成阶段,将输入源中的每一个条目经过散列函数的计算都放到不 ...

随机推荐

  1. wuter 使用了腾讯云Ubuntu系统,但是没有root权限怎么办?

    友情链接: 手把手教你搭饥荒专用服务器(一)-服务器准备工作 手把手教你搭饥荒专用服务器(二)-环境配置及基本使用 手把手教你搭饥荒专用服务器(三)-MOD及其他高级设置 手把手教你搭饥荒专用服务器( ...

  2. Vitis AI--个人调试篇

    一.下载VITIS-AI的仓库 单独git clone很慢,因此先将其导入到gitee平台,再执行clone 1. Import VITIS-AI github repo into gitee rep ...

  3. idea 【Maven Projects # Profiles】问题记录

    今天启动接一个新项目,然后项目启动后发现启动的环境和预想的不一致,查看 pom 文件确认自己是 dev 无误之后,但是启动的就是 test 环境. 问题 发现了启动环境不对不对之后,自己试了一种解决办 ...

  4. Maven中使用JSTL

    在pom.xml文件下面增加如下的依赖包: <dependency> <groupId>jstl</groupId> <artifactId>jstl& ...

  5. SparkStreaming推测机制:面试被问遇到什么问题,说这个显水平!

    背景 老刘最近晚上会刷刷牛客网的大数据开发面经,总是会看到一个高频的面试题,那就是你在学习过程中遇到过什么问题吗? 这个问题其实有点难回答,如果我说的太简单了,会不会让面试官觉得水平太低,那我应该讲什 ...

  6. 用漫画的形式展现——URL和HTTP

    http请求内容:请求头:get.post等发送请求(其他:head.put.delete.option) host 地址 user-Agent cookie 通行证 head:与get请求类似,不同 ...

  7. vue中使用AES.js和crypto.js加密

    一:crypto-js加密 1.1:安装依赖 npm install crypto-js --save-dev 1.2 :在项目目录上创建一个js文件里面写入加密,解密的代码 mport Crypto ...

  8. Spark算子使用

    一.spark的算子分类 转换算子和行动算子 转换算子:在使用的时候,spark是不会真正执行,直到需要行动算子之后才会执行.在spark中每一个算子在计算之后就会产生一个新的RDD. 二.在编写sp ...

  9. 感谢 Gridea,让我有动力写作

    1. 真的要感谢 Gridea,让我对写作产生热忱.一直有在各大博客平台输出的习惯,但是都没有持续更新.有的平台广告太多,写不下去.有的平台排版复杂,写文章1个小时,排版要2个小时.所以后面换成了静态 ...

  10. (数据科学学习手札102)Python+Dash快速web应用开发——基础概念篇

    本文示例代码与数据已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 这是我的新系列教程Python+Dash快 ...