Dictum:



 A man who is willing to be a slave, who does not know the power of freedom. -- Beck


动态规划(Dynamic Programming, DP)是基于模型的方法,即在给定一个利用MDP描述的完备的环境模型下可以计算出最优策略的优化算法。

DP的两种性质:1.最优子结构:问题的最优解法可以被分为若干个子问题;2.重叠子问题:子问题之间存在递归关系,解法是可以被重复利用的。在强化学习中,MDP满足两个性质,DP的关键思想就是利用价值函数组织并结构化对好的策略的搜索。

策略评估

策略评估(Policy Evaluation)也被称为“预测问题”,就是计算任意一个随机策略\(\pi\)的状态价值函数\(v_\pi\)的问题。

在MDP中,由公式\((2.11)\)最终得到了状态价值函数的贝尔曼方程:\(v_ \pi(s)=\displaystyle \sum_a\pi(a|s) \sum_{s^\prime.r} p(s^\prime,r|s,a) [r+\gamma v_\pi(s^\prime)]\),该方程可以通过迭代法求解,方法如下:

  1. 将状态价值函数序列记为\(\left\{ v_0,v_1,...,v_k\right\}\)
  2. \(v_0\)作为初始状态价值函数,任意取值(在终止状态时,取值必须为0)
  3. 通过下面的公式进行迭代$$v_{k+1}=\displaystyle \sum_a\pi(a|s) \sum_{s^\prime.r} p(s^\prime,r|s,a) [r+\gamma v_k(s^\prime)] \tag{3.1}$$

序列\(\left\{v_k\right\}\)在\(k \rightarrow \infty\)时将收敛于\(v_\pi\)。该方法需要两个数组:一个用于存储旧的\(v_k(s)\),另一个用于存储新的\(v_{k+1}(s)\)。也可以每次直接用新状态价值函数替换旧状态价值函数,这就是"in-place"更新。

价值迭代

上述的策略评估方法是一个多次遍历状态集合的迭代过程,因此,可以通过价值迭代(Value Iteration)来缩短策略评估的步骤,公式如下:

\[\begin{aligned}
v_{k+1}(s)
& \doteq \max_a \mathbb{E}[R_{t+1}+ \gamma v_k(S_{t+1}|S_t=s,A_t=a)] \\
&=\max_a \displaystyle \sum_{s^\prime,r}p(s^\prime,r|s,a)[r+\gamma v_k(s^\prime)]
\end{aligned} \tag{3.2}
\]

通过公式\((3.2)\)可以在一次遍历后立即停止策略评估,只需要对每个状态更新一次,从而提升计算效率。

策略改进

通过策略评估得出策略的状态价值函数,可以根据策略改进定理(policy improvement theorem)选择出贪心策略:

对于任意两个确定策略\(\pi\)和\(\pi^\prime\),\(\forall s \in \mathcal{S},q_\pi(s,\pi^\prime(s)) \geq v_\pi(s)\),则策略\(\pi^\prime\)不劣于\(\pi\)。

在这种情况下,\(v_{\pi^\prime}(s) \geq v_\pi(s)\)。证明过程如下

\[\begin{aligned}
v_{\pi}(s)
& \leq q_{\pi}\left(s, \pi^{\prime}(s)\right) \\
&=\mathbb{E}\left[R_{t+1}+\gamma v_{\pi}\left(S_{t+1}\right) | S_{t}=s, A_{t}=\pi^{\prime}(a)\right] \\
&=\mathbb{E}_{\pi^{\prime}}\left[R_{t+1}+\gamma v_{\pi}\left(S_{t+1}\right) | S_{t}=s\right] \\
& \leq \mathbb{E}_{\pi^{\prime}}\left[R_{t+1}+\gamma q_{\pi}\left(S_{t+1}, \pi^{\prime}\left(S_{t+1}\right)\right) | S_{t}=s\right] \\
&=\mathbb{E}_{\pi^{\prime}}\left[R_{t+1}+\gamma \mathbb{E}_{\pi^{\prime}}\left[R_{t+2}+\gamma v_{\pi}\left(S_{t+2}\right)\right] | S_{t}=s\right] \\
&=\mathbb{E}_{\pi^{\prime}}\left[R_{t+1}+\gamma R_{t+2}+\gamma^{2} v_{\pi}\left(S_{t+2}\right) | S_{t}=s\right] \\
& \leq \mathbb{E}_{\pi^{\prime}}\left[R_{t+1}+\gamma R_{t+2}+\gamma^{2} R_{t+3}+\gamma^{3} v_{\pi}\left(S_{t+3}\right) | S_{t}=s\right] \\
& \qquad \vdots \\
& \leq \mathbb{E}_{\pi^{\prime}}\left[R_{t+1}+\gamma R_{t+2}+\gamma^{2} R_{t+3}+\gamma^{3} R_{t+4}+\cdots | S_{t}=s\right] \\
&=v_{\pi^{\prime}}(s)
\end{aligned} \tag{3.3}
\]

由此,可以推出贪心策略\(\pi^\prime\),满足

\[\begin{aligned}
\pi^{\prime}(s)
& \doteq \underset{a}{\arg \max } q_{\pi}(s, a) \\
&=\underset{a}{\operatorname{argmax}} \mathbb{E}\left[R_{t+1}+\gamma v_{\pi}\left(S_{t+1}\right) | S_{t}=s, A_{t}=a\right] \\
&=\underset{a}{\operatorname{argmax}} \sum_{s^{\prime}, r} p\left(s^{\prime}, r | s, a\right)\left[r+\gamma v_{\pi}\left(s^{\prime}\right)\right]
\end{aligned} \tag{3.4}
\]

同时,可以写出它的状态价值函数:

\[\begin{aligned}
v_{\pi^{\prime}}(s)
&=\max _{a} \mathbb{E}\left[R_{t+1}+\gamma v_{\pi^{\prime}}\left(S_{t+1}\right) | S_{t}=s, A_{t}=a\right] \\
&=\max _{a} \sum_{s^{\prime}, r} p\left(s^{\prime}, r | s, a\right)\left[r+\gamma v_{\pi^{\prime}}\left(s^{\prime}\right)\right] \\
&=v_*(s)
\end{aligned} \tag{3.5}
\]

策略迭代

通过下面的链式方法,可以得到一个不断改进的策略和状态价值函数的序列:

\[\pi_{0} \stackrel{E}{\longrightarrow} v_{\pi_{0}} \stackrel{I}{\longrightarrow} \pi_{1} \stackrel{E}{\longrightarrow} v_{\pi_{1}} \stackrel{I}{\longrightarrow} \pi_{2} \stackrel{E}{\longrightarrow} \cdots \stackrel{I}{\longrightarrow} \pi_{*} \stackrel{E}{\longrightarrow} v_{*}
\]

\(\stackrel{E}{\longrightarrow}\)表示策略评估,\(\stackrel{I}{\longrightarrow}\)表示策略改进,每一次的策略评估都是一个迭代计算的过程,需要基于前一个策略的状态价值函数开始计算。


由上图可知,策略迭代(Policy Iteration)是通过策略评估和策略改进不断交互,使策略和状态价值函数最终收敛为最优。

异步动态规划

上述的都是同步动态规划(Synchronous Dynamic Programming),它们的缺点是需要对MDP的整个状态集进行遍历。异步动态规划(Asynchronous Dynamic Programming)使使用任意可用的状态值,以任意规则进行更新,为了确保能够正确收敛,异步动态规划必须不断更新所有状态的值。


References

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction (Second Edition). 2018.

Csaba Szepesvári. Algorithms for Reinforcement Learning. 2009.

Course: UCL Reinforcement Learning Course (by David Silver)

Ⅲ Dynamic Programming的更多相关文章

  1. 动态规划 Dynamic Programming

    March 26, 2013 作者:Hawstein 出处:http://hawstein.com/posts/dp-novice-to-advanced.html 声明:本文采用以下协议进行授权: ...

  2. Dynamic Programming

    We began our study of algorithmic techniques with greedy algorithms, which in some sense form the mo ...

  3. HDU 4223 Dynamic Programming?(最小连续子序列和的绝对值O(NlogN))

    传送门 Description Dynamic Programming, short for DP, is the favorite of iSea. It is a method for solvi ...

  4. hdu 4223 Dynamic Programming?

    Dynamic Programming? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Oth ...

  5. 算法导论学习-Dynamic Programming

    转载自:http://blog.csdn.net/speedme/article/details/24231197 1. 什么是动态规划 ------------------------------- ...

  6. Dynamic Programming: From novice to advanced

    作者:Dumitru 出处:http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=dynProg An impo ...

  7. HDU-4972 A simple dynamic programming problem

    http://acm.hdu.edu.cn/showproblem.php?pid=4972 ++和+1还是有区别的,不可大意. A simple dynamic programming proble ...

  8. [算法]动态规划(Dynamic programming)

    转载请注明原创:http://www.cnblogs.com/StartoverX/p/4603173.html Dynamic Programming的Programming指的不是程序而是一种表格 ...

  9. hdu 4972 A simple dynamic programming problem(高效)

    pid=4972" target="_blank" style="">题目链接:hdu 4972 A simple dynamic progra ...

  10. Julia is a high-level, high-performance dynamic programming language for technical computing, with syntax that is familiar to users of other technical

    http://julialang.org/ julia | source | downloads | docs | blog | community | teaching | publications ...

随机推荐

  1. matlab外部程序接口-excel

    在excel中使用matlab 内容: 1.Spreadsheet Link 程序 安装与启动 1 打开excle->文件->选项 2.加载项->转到 3.浏览(可用加载宏,本来没有 ...

  2. 【Java并发编程】从CPU缓存模型到JMM来理解volatile关键字

    目录 并发编程三大特性 原子性 可见性 有序性 CPU缓存模型是什么 高速缓存为何出现? 缓存一致性问题 如何解决缓存不一致 JMM内存模型是什么 JMM的规定 Java对三大特性的保证 原子性 可见 ...

  3. Echarts山东省地图两级钻取、返回及济南合并莱芜地图

    Echarts3.0+jQuery3.3.1 山东省地图中济南市需要注意下,莱芜市已经和济南市合并,地图数据来源于地图选择器,获取山东省地图信息及各地市地图信息(JSON格式) //山东地图(第一级地 ...

  4. 测试工具-XPath使用

    XML有两种MIME类型,即application/xml和text/xml,在HTTP中,MIME Type类型被定义在Content-Type header中.我们经常也会看到接口返回数据类型为X ...

  5. 智慧组织(SO)如何敏捷构建?

    人类社会正处于千年未有之变局的关键时刻--互联网.大数据.AI和实体经济深度融合,数据正在重新定义世界并重构财富体系."新旧交织.破立并存",数字经济方兴未艾,传统势力逐步淡出.各 ...

  6. 细嚼JS闭包知识点及案例分析

    闭包是js开发惯用的技巧,什么是闭包? 闭包指的是:能够访问另一个函数作用域的变量的函数.清晰的讲:闭包就是一个函数,这个函数能够访问其他函数的作用域中的变量.默认闭包的this指向windows. ...

  7. 初识 Istio - 服务网格管理工具

    What is a service mesh(服务网格)? 微服务在国内流行已经多年了,大多数公司选择了基于容器化技术( Docker )以及容器编排管理平台 ( Kubernetes )落地微服务 ...

  8. CF600E Lomsat gelral 树上启发式合并

    题目描述 有一棵 \(n\) 个结点的以 \(1\) 号结点为根的有根树. 每个结点都有一个颜色,颜色是以编号表示的, \(i\) 号结点的颜色编号为 \(c_i\)​. 如果一种颜色在以 \(x\) ...

  9. 003 01 Android 零基础入门 01 Java基础语法 01 Java初识 03 Java程序的执行流程

    003 01 Android 零基础入门 01 Java基础语法 01 Java初识 03 Java程序的执行流程 Java程序长啥样? 首先编写一个Java程序 记事本编写程序 打开记事本 1.wi ...

  10. Java知识系统回顾整理01基础05控制流程01if

    一.if if(表达式1){ 表达式2: } 如果表达式1的值是true, 就执行表达式2 public class HelloWorld { public static void main(Stri ...