Dictum:



 A man who is willing to be a slave, who does not know the power of freedom. -- Beck


动态规划(Dynamic Programming, DP)是基于模型的方法,即在给定一个利用MDP描述的完备的环境模型下可以计算出最优策略的优化算法。

DP的两种性质:1.最优子结构:问题的最优解法可以被分为若干个子问题;2.重叠子问题:子问题之间存在递归关系,解法是可以被重复利用的。在强化学习中,MDP满足两个性质,DP的关键思想就是利用价值函数组织并结构化对好的策略的搜索。

策略评估

策略评估(Policy Evaluation)也被称为“预测问题”,就是计算任意一个随机策略\(\pi\)的状态价值函数\(v_\pi\)的问题。

在MDP中,由公式\((2.11)\)最终得到了状态价值函数的贝尔曼方程:\(v_ \pi(s)=\displaystyle \sum_a\pi(a|s) \sum_{s^\prime.r} p(s^\prime,r|s,a) [r+\gamma v_\pi(s^\prime)]\),该方程可以通过迭代法求解,方法如下:

  1. 将状态价值函数序列记为\(\left\{ v_0,v_1,...,v_k\right\}\)
  2. \(v_0\)作为初始状态价值函数,任意取值(在终止状态时,取值必须为0)
  3. 通过下面的公式进行迭代$$v_{k+1}=\displaystyle \sum_a\pi(a|s) \sum_{s^\prime.r} p(s^\prime,r|s,a) [r+\gamma v_k(s^\prime)] \tag{3.1}$$

序列\(\left\{v_k\right\}\)在\(k \rightarrow \infty\)时将收敛于\(v_\pi\)。该方法需要两个数组:一个用于存储旧的\(v_k(s)\),另一个用于存储新的\(v_{k+1}(s)\)。也可以每次直接用新状态价值函数替换旧状态价值函数,这就是"in-place"更新。

价值迭代

上述的策略评估方法是一个多次遍历状态集合的迭代过程,因此,可以通过价值迭代(Value Iteration)来缩短策略评估的步骤,公式如下:

\[\begin{aligned}
v_{k+1}(s)
& \doteq \max_a \mathbb{E}[R_{t+1}+ \gamma v_k(S_{t+1}|S_t=s,A_t=a)] \\
&=\max_a \displaystyle \sum_{s^\prime,r}p(s^\prime,r|s,a)[r+\gamma v_k(s^\prime)]
\end{aligned} \tag{3.2}
\]

通过公式\((3.2)\)可以在一次遍历后立即停止策略评估,只需要对每个状态更新一次,从而提升计算效率。

策略改进

通过策略评估得出策略的状态价值函数,可以根据策略改进定理(policy improvement theorem)选择出贪心策略:

对于任意两个确定策略\(\pi\)和\(\pi^\prime\),\(\forall s \in \mathcal{S},q_\pi(s,\pi^\prime(s)) \geq v_\pi(s)\),则策略\(\pi^\prime\)不劣于\(\pi\)。

在这种情况下,\(v_{\pi^\prime}(s) \geq v_\pi(s)\)。证明过程如下

\[\begin{aligned}
v_{\pi}(s)
& \leq q_{\pi}\left(s, \pi^{\prime}(s)\right) \\
&=\mathbb{E}\left[R_{t+1}+\gamma v_{\pi}\left(S_{t+1}\right) | S_{t}=s, A_{t}=\pi^{\prime}(a)\right] \\
&=\mathbb{E}_{\pi^{\prime}}\left[R_{t+1}+\gamma v_{\pi}\left(S_{t+1}\right) | S_{t}=s\right] \\
& \leq \mathbb{E}_{\pi^{\prime}}\left[R_{t+1}+\gamma q_{\pi}\left(S_{t+1}, \pi^{\prime}\left(S_{t+1}\right)\right) | S_{t}=s\right] \\
&=\mathbb{E}_{\pi^{\prime}}\left[R_{t+1}+\gamma \mathbb{E}_{\pi^{\prime}}\left[R_{t+2}+\gamma v_{\pi}\left(S_{t+2}\right)\right] | S_{t}=s\right] \\
&=\mathbb{E}_{\pi^{\prime}}\left[R_{t+1}+\gamma R_{t+2}+\gamma^{2} v_{\pi}\left(S_{t+2}\right) | S_{t}=s\right] \\
& \leq \mathbb{E}_{\pi^{\prime}}\left[R_{t+1}+\gamma R_{t+2}+\gamma^{2} R_{t+3}+\gamma^{3} v_{\pi}\left(S_{t+3}\right) | S_{t}=s\right] \\
& \qquad \vdots \\
& \leq \mathbb{E}_{\pi^{\prime}}\left[R_{t+1}+\gamma R_{t+2}+\gamma^{2} R_{t+3}+\gamma^{3} R_{t+4}+\cdots | S_{t}=s\right] \\
&=v_{\pi^{\prime}}(s)
\end{aligned} \tag{3.3}
\]

由此,可以推出贪心策略\(\pi^\prime\),满足

\[\begin{aligned}
\pi^{\prime}(s)
& \doteq \underset{a}{\arg \max } q_{\pi}(s, a) \\
&=\underset{a}{\operatorname{argmax}} \mathbb{E}\left[R_{t+1}+\gamma v_{\pi}\left(S_{t+1}\right) | S_{t}=s, A_{t}=a\right] \\
&=\underset{a}{\operatorname{argmax}} \sum_{s^{\prime}, r} p\left(s^{\prime}, r | s, a\right)\left[r+\gamma v_{\pi}\left(s^{\prime}\right)\right]
\end{aligned} \tag{3.4}
\]

同时,可以写出它的状态价值函数:

\[\begin{aligned}
v_{\pi^{\prime}}(s)
&=\max _{a} \mathbb{E}\left[R_{t+1}+\gamma v_{\pi^{\prime}}\left(S_{t+1}\right) | S_{t}=s, A_{t}=a\right] \\
&=\max _{a} \sum_{s^{\prime}, r} p\left(s^{\prime}, r | s, a\right)\left[r+\gamma v_{\pi^{\prime}}\left(s^{\prime}\right)\right] \\
&=v_*(s)
\end{aligned} \tag{3.5}
\]

策略迭代

通过下面的链式方法,可以得到一个不断改进的策略和状态价值函数的序列:

\[\pi_{0} \stackrel{E}{\longrightarrow} v_{\pi_{0}} \stackrel{I}{\longrightarrow} \pi_{1} \stackrel{E}{\longrightarrow} v_{\pi_{1}} \stackrel{I}{\longrightarrow} \pi_{2} \stackrel{E}{\longrightarrow} \cdots \stackrel{I}{\longrightarrow} \pi_{*} \stackrel{E}{\longrightarrow} v_{*}
\]

\(\stackrel{E}{\longrightarrow}\)表示策略评估,\(\stackrel{I}{\longrightarrow}\)表示策略改进,每一次的策略评估都是一个迭代计算的过程,需要基于前一个策略的状态价值函数开始计算。


由上图可知,策略迭代(Policy Iteration)是通过策略评估和策略改进不断交互,使策略和状态价值函数最终收敛为最优。

异步动态规划

上述的都是同步动态规划(Synchronous Dynamic Programming),它们的缺点是需要对MDP的整个状态集进行遍历。异步动态规划(Asynchronous Dynamic Programming)使使用任意可用的状态值,以任意规则进行更新,为了确保能够正确收敛,异步动态规划必须不断更新所有状态的值。


References

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction (Second Edition). 2018.

Csaba Szepesvári. Algorithms for Reinforcement Learning. 2009.

Course: UCL Reinforcement Learning Course (by David Silver)

Ⅲ Dynamic Programming的更多相关文章

  1. 动态规划 Dynamic Programming

    March 26, 2013 作者:Hawstein 出处:http://hawstein.com/posts/dp-novice-to-advanced.html 声明:本文采用以下协议进行授权: ...

  2. Dynamic Programming

    We began our study of algorithmic techniques with greedy algorithms, which in some sense form the mo ...

  3. HDU 4223 Dynamic Programming?(最小连续子序列和的绝对值O(NlogN))

    传送门 Description Dynamic Programming, short for DP, is the favorite of iSea. It is a method for solvi ...

  4. hdu 4223 Dynamic Programming?

    Dynamic Programming? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Oth ...

  5. 算法导论学习-Dynamic Programming

    转载自:http://blog.csdn.net/speedme/article/details/24231197 1. 什么是动态规划 ------------------------------- ...

  6. Dynamic Programming: From novice to advanced

    作者:Dumitru 出处:http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=dynProg An impo ...

  7. HDU-4972 A simple dynamic programming problem

    http://acm.hdu.edu.cn/showproblem.php?pid=4972 ++和+1还是有区别的,不可大意. A simple dynamic programming proble ...

  8. [算法]动态规划(Dynamic programming)

    转载请注明原创:http://www.cnblogs.com/StartoverX/p/4603173.html Dynamic Programming的Programming指的不是程序而是一种表格 ...

  9. hdu 4972 A simple dynamic programming problem(高效)

    pid=4972" target="_blank" style="">题目链接:hdu 4972 A simple dynamic progra ...

  10. Julia is a high-level, high-performance dynamic programming language for technical computing, with syntax that is familiar to users of other technical

    http://julialang.org/ julia | source | downloads | docs | blog | community | teaching | publications ...

随机推荐

  1. kolla部署openstack多节点高可用并对接ceph后端存储(17)

    部署节点执行: 安装基础包和docker yum install python-devel libffi-devel gcc openssl-devel git python-pip -y 升级一下 ...

  2. cnblog维护

    title: 博客归纳 blog: CSDN data: Java学习路线及视频 2019 12/31 时间管理 2020 1/22 Git是什么? 1/23 Git安装--Windows 3/24 ...

  3. EAM在不同行业的应用

    EAM在不同行业的应用 EAM从出现至今,已让很多资产密集型企业受益,甚至在一些行业领域里已经是公认的.不可或缺的管理方案,比如电力行业.轨道交通行业等.但由于不同行业或者企业业务类型不同,导致了资产 ...

  4. elasticsearch备份和还原(基于hdfs)

    备份和还原,为什么elasticsearch还需要备份呢,明明可以设置副本做到高可用,那怕啥呢? 其实在实际的生产环境中,一般最终的结果数据都是要备份的,这样的做的目的,就是能够以最快的速度还原数据, ...

  5. 【转】Locust 性能测试-小案例(1)-环境搭建

    说在前面的话:从这节课开始,将讲解Locust作为一款测试工具,要怎么去应用.首先是"小案例"的系列文章,主要是给大家讲解locustfile也就是场景模拟的一些模式和方法.等到& ...

  6. 单调队列优化O(N)建BST P1377 [TJOI2011]树的序

    洛谷 P1377 [TJOI2011]树的序 (单调队列优化建BST 链接 题意分析 本题思路很简单,根据题意,我们利用所给的Bst生成序将Bst建立起来,然后输出该BST的先序遍历即可: 但,如果我 ...

  7. Linux软件管理常用命令和选项

    rpm /var/lib/rpm:数据库目录 -ivh x:安装软件包x -Uvh x:升级或安装软件包x,如果没有安装x的旧版本,则安装x,否则删除x的旧版本后再安装x. -Fvh x:升级软件包x ...

  8. C语言中time_t数据类型详细介绍

    包含文件:<time.h> #ifndef __TIME_T #define __TIME_T     /* 避免重复定义 time_t */ typedef long     time_ ...

  9. Python装饰器实现带参数和不带参数

    1 def log(text=None): 2 3 if isinstance(text, str): 4 def decorator(func): 5 @functools.wraps(func) ...

  10. nginx完美支持thinkphp3.2.2(需配置URL_MODE=>3 rewrite兼容模式)

    来源:http://www.thinkphp.cn/topic/26637.html 环境:nginx 1.6,thinkphp3.2.2 第一步,修改server块 server { listen ...