Ⅲ Dynamic Programming
Dictum:
A man who is willing to be a slave, who does not know the power of freedom. -- Beck
动态规划(Dynamic Programming, DP)是基于模型的方法,即在给定一个利用MDP描述的完备的环境模型下可以计算出最优策略的优化算法。
DP的两种性质:1.最优子结构:问题的最优解法可以被分为若干个子问题;2.重叠子问题:子问题之间存在递归关系,解法是可以被重复利用的。在强化学习中,MDP满足两个性质,DP的关键思想就是利用价值函数组织并结构化对好的策略的搜索。
策略评估
策略评估(Policy Evaluation)也被称为“预测问题”,就是计算任意一个随机策略\(\pi\)的状态价值函数\(v_\pi\)的问题。
在MDP中,由公式\((2.11)\)最终得到了状态价值函数的贝尔曼方程:\(v_ \pi(s)=\displaystyle \sum_a\pi(a|s) \sum_{s^\prime.r} p(s^\prime,r|s,a) [r+\gamma v_\pi(s^\prime)]\),该方程可以通过迭代法求解,方法如下:
- 将状态价值函数序列记为\(\left\{ v_0,v_1,...,v_k\right\}\)
- \(v_0\)作为初始状态价值函数,任意取值(在终止状态时,取值必须为0)
- 通过下面的公式进行迭代$$v_{k+1}=\displaystyle \sum_a\pi(a|s) \sum_{s^\prime.r} p(s^\prime,r|s,a) [r+\gamma v_k(s^\prime)] \tag{3.1}$$
序列\(\left\{v_k\right\}\)在\(k \rightarrow \infty\)时将收敛于\(v_\pi\)。该方法需要两个数组:一个用于存储旧的\(v_k(s)\),另一个用于存储新的\(v_{k+1}(s)\)。也可以每次直接用新状态价值函数替换旧状态价值函数,这就是"in-place"更新。
价值迭代
上述的策略评估方法是一个多次遍历状态集合的迭代过程,因此,可以通过价值迭代(Value Iteration)来缩短策略评估的步骤,公式如下:
v_{k+1}(s)
& \doteq \max_a \mathbb{E}[R_{t+1}+ \gamma v_k(S_{t+1}|S_t=s,A_t=a)] \\
&=\max_a \displaystyle \sum_{s^\prime,r}p(s^\prime,r|s,a)[r+\gamma v_k(s^\prime)]
\end{aligned} \tag{3.2}
\]
通过公式\((3.2)\)可以在一次遍历后立即停止策略评估,只需要对每个状态更新一次,从而提升计算效率。
策略改进
通过策略评估得出策略的状态价值函数,可以根据策略改进定理(policy improvement theorem)选择出贪心策略:
对于任意两个确定策略\(\pi\)和\(\pi^\prime\),\(\forall s \in \mathcal{S},q_\pi(s,\pi^\prime(s)) \geq v_\pi(s)\),则策略\(\pi^\prime\)不劣于\(\pi\)。
在这种情况下,\(v_{\pi^\prime}(s) \geq v_\pi(s)\)。证明过程如下
v_{\pi}(s)
& \leq q_{\pi}\left(s, \pi^{\prime}(s)\right) \\
&=\mathbb{E}\left[R_{t+1}+\gamma v_{\pi}\left(S_{t+1}\right) | S_{t}=s, A_{t}=\pi^{\prime}(a)\right] \\
&=\mathbb{E}_{\pi^{\prime}}\left[R_{t+1}+\gamma v_{\pi}\left(S_{t+1}\right) | S_{t}=s\right] \\
& \leq \mathbb{E}_{\pi^{\prime}}\left[R_{t+1}+\gamma q_{\pi}\left(S_{t+1}, \pi^{\prime}\left(S_{t+1}\right)\right) | S_{t}=s\right] \\
&=\mathbb{E}_{\pi^{\prime}}\left[R_{t+1}+\gamma \mathbb{E}_{\pi^{\prime}}\left[R_{t+2}+\gamma v_{\pi}\left(S_{t+2}\right)\right] | S_{t}=s\right] \\
&=\mathbb{E}_{\pi^{\prime}}\left[R_{t+1}+\gamma R_{t+2}+\gamma^{2} v_{\pi}\left(S_{t+2}\right) | S_{t}=s\right] \\
& \leq \mathbb{E}_{\pi^{\prime}}\left[R_{t+1}+\gamma R_{t+2}+\gamma^{2} R_{t+3}+\gamma^{3} v_{\pi}\left(S_{t+3}\right) | S_{t}=s\right] \\
& \qquad \vdots \\
& \leq \mathbb{E}_{\pi^{\prime}}\left[R_{t+1}+\gamma R_{t+2}+\gamma^{2} R_{t+3}+\gamma^{3} R_{t+4}+\cdots | S_{t}=s\right] \\
&=v_{\pi^{\prime}}(s)
\end{aligned} \tag{3.3}
\]
由此,可以推出贪心策略\(\pi^\prime\),满足
\pi^{\prime}(s)
& \doteq \underset{a}{\arg \max } q_{\pi}(s, a) \\
&=\underset{a}{\operatorname{argmax}} \mathbb{E}\left[R_{t+1}+\gamma v_{\pi}\left(S_{t+1}\right) | S_{t}=s, A_{t}=a\right] \\
&=\underset{a}{\operatorname{argmax}} \sum_{s^{\prime}, r} p\left(s^{\prime}, r | s, a\right)\left[r+\gamma v_{\pi}\left(s^{\prime}\right)\right]
\end{aligned} \tag{3.4}
\]
同时,可以写出它的状态价值函数:
v_{\pi^{\prime}}(s)
&=\max _{a} \mathbb{E}\left[R_{t+1}+\gamma v_{\pi^{\prime}}\left(S_{t+1}\right) | S_{t}=s, A_{t}=a\right] \\
&=\max _{a} \sum_{s^{\prime}, r} p\left(s^{\prime}, r | s, a\right)\left[r+\gamma v_{\pi^{\prime}}\left(s^{\prime}\right)\right] \\
&=v_*(s)
\end{aligned} \tag{3.5}
\]
策略迭代
通过下面的链式方法,可以得到一个不断改进的策略和状态价值函数的序列:
\]
\(\stackrel{E}{\longrightarrow}\)表示策略评估,\(\stackrel{I}{\longrightarrow}\)表示策略改进,每一次的策略评估都是一个迭代计算的过程,需要基于前一个策略的状态价值函数开始计算。
由上图可知,策略迭代(Policy Iteration)是通过策略评估和策略改进不断交互,使策略和状态价值函数最终收敛为最优。
异步动态规划
上述的都是同步动态规划(Synchronous Dynamic Programming),它们的缺点是需要对MDP的整个状态集进行遍历。异步动态规划(Asynchronous Dynamic Programming)使使用任意可用的状态值,以任意规则进行更新,为了确保能够正确收敛,异步动态规划必须不断更新所有状态的值。
References
Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction (Second Edition). 2018.
Csaba Szepesvári. Algorithms for Reinforcement Learning. 2009.
Course: UCL Reinforcement Learning Course (by David Silver)
Ⅲ Dynamic Programming的更多相关文章
- 动态规划 Dynamic Programming
March 26, 2013 作者:Hawstein 出处:http://hawstein.com/posts/dp-novice-to-advanced.html 声明:本文采用以下协议进行授权: ...
- Dynamic Programming
We began our study of algorithmic techniques with greedy algorithms, which in some sense form the mo ...
- HDU 4223 Dynamic Programming?(最小连续子序列和的绝对值O(NlogN))
传送门 Description Dynamic Programming, short for DP, is the favorite of iSea. It is a method for solvi ...
- hdu 4223 Dynamic Programming?
Dynamic Programming? Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Oth ...
- 算法导论学习-Dynamic Programming
转载自:http://blog.csdn.net/speedme/article/details/24231197 1. 什么是动态规划 ------------------------------- ...
- Dynamic Programming: From novice to advanced
作者:Dumitru 出处:http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=dynProg An impo ...
- HDU-4972 A simple dynamic programming problem
http://acm.hdu.edu.cn/showproblem.php?pid=4972 ++和+1还是有区别的,不可大意. A simple dynamic programming proble ...
- [算法]动态规划(Dynamic programming)
转载请注明原创:http://www.cnblogs.com/StartoverX/p/4603173.html Dynamic Programming的Programming指的不是程序而是一种表格 ...
- hdu 4972 A simple dynamic programming problem(高效)
pid=4972" target="_blank" style="">题目链接:hdu 4972 A simple dynamic progra ...
- Julia is a high-level, high-performance dynamic programming language for technical computing, with syntax that is familiar to users of other technical
http://julialang.org/ julia | source | downloads | docs | blog | community | teaching | publications ...
随机推荐
- matlab外部程序接口-excel
在excel中使用matlab 内容: 1.Spreadsheet Link 程序 安装与启动 1 打开excle->文件->选项 2.加载项->转到 3.浏览(可用加载宏,本来没有 ...
- 【Java并发编程】从CPU缓存模型到JMM来理解volatile关键字
目录 并发编程三大特性 原子性 可见性 有序性 CPU缓存模型是什么 高速缓存为何出现? 缓存一致性问题 如何解决缓存不一致 JMM内存模型是什么 JMM的规定 Java对三大特性的保证 原子性 可见 ...
- Echarts山东省地图两级钻取、返回及济南合并莱芜地图
Echarts3.0+jQuery3.3.1 山东省地图中济南市需要注意下,莱芜市已经和济南市合并,地图数据来源于地图选择器,获取山东省地图信息及各地市地图信息(JSON格式) //山东地图(第一级地 ...
- 测试工具-XPath使用
XML有两种MIME类型,即application/xml和text/xml,在HTTP中,MIME Type类型被定义在Content-Type header中.我们经常也会看到接口返回数据类型为X ...
- 智慧组织(SO)如何敏捷构建?
人类社会正处于千年未有之变局的关键时刻--互联网.大数据.AI和实体经济深度融合,数据正在重新定义世界并重构财富体系."新旧交织.破立并存",数字经济方兴未艾,传统势力逐步淡出.各 ...
- 细嚼JS闭包知识点及案例分析
闭包是js开发惯用的技巧,什么是闭包? 闭包指的是:能够访问另一个函数作用域的变量的函数.清晰的讲:闭包就是一个函数,这个函数能够访问其他函数的作用域中的变量.默认闭包的this指向windows. ...
- 初识 Istio - 服务网格管理工具
What is a service mesh(服务网格)? 微服务在国内流行已经多年了,大多数公司选择了基于容器化技术( Docker )以及容器编排管理平台 ( Kubernetes )落地微服务 ...
- CF600E Lomsat gelral 树上启发式合并
题目描述 有一棵 \(n\) 个结点的以 \(1\) 号结点为根的有根树. 每个结点都有一个颜色,颜色是以编号表示的, \(i\) 号结点的颜色编号为 \(c_i\). 如果一种颜色在以 \(x\) ...
- 003 01 Android 零基础入门 01 Java基础语法 01 Java初识 03 Java程序的执行流程
003 01 Android 零基础入门 01 Java基础语法 01 Java初识 03 Java程序的执行流程 Java程序长啥样? 首先编写一个Java程序 记事本编写程序 打开记事本 1.wi ...
- Java知识系统回顾整理01基础05控制流程01if
一.if if(表达式1){ 表达式2: } 如果表达式1的值是true, 就执行表达式2 public class HelloWorld { public static void main(Stri ...