摘要:为了探究垃圾的智能分类等问题,由中关村海华信息研究院、清华大学交叉信息研究院以及Biendata举办的2020海华AI垃圾分类大赛吸引了大量工程师以及高校学生的参与

01赛题介绍

随着我国经济的发展,城市化进程不断加速,生活垃圾对城市环境的威胁日益增加。如何高效、环保地解决处理生活垃圾迫在眉睫。因此垃圾的智能分类对于智能化分拣垃圾、提高垃圾分拣效率就显得十分重要。为了探究这一问题,由中关村海华信息研究院、清华大学交叉信息研究院以及Biendata举办的2020海华AI垃圾分类大赛吸引了大量工程师以及高校学生的参与。由华为NAIE平台提供的算力支持,也为比赛的顺利开展奠定了基础。该比赛旨在激发更广泛的科研探索热情,挖掘更有价值的算法优化和创新。

02数据分析

我们参与的是该比赛的专业赛道,因此有两种数据集可以使用。一种为单类数据集,共80,000张垃圾图像,每张图像中只有一个类别。此外,还提供了图中唯一对象的边框的信息。多类别数据集包含训练集中的2998张垃圾图像,验证集中的1000张垃圾图像,测试集中的1000张垃圾图像,每幅图像最多包含20个类别。

不同于VOC、COCO、OID等常见的目标数据集,这些数据集具有不同的特点:

1. 对于205个类别,单类垃圾数据集的大小就足够了。然而,这个数据集中的垃圾图像与多类数据集中的垃圾图像有很大的不同,即使是同一类别的垃圾。直接使用该数据集来训练模型可能会导致特征不匹配和性能下降(图1)。

图1:左图为多类数据集中的镜子,右图为单类数据集中的镜子

2. 多类数据集在训练集中只包含2998张垃圾图像。而在125个类别的情况下,该数据量是比较小的,且类别存在不平衡的现象。因此大规模数据集的迁移学习和减少过拟合的技术是非常需要的。

3. 在大多数多类图像中,垃圾密集地堆积在图像的中心,并且形状大小不一。它会导致垃圾相互遮挡,使检测任务更加困难。并且每张图像的背景都比较干净(图2)。

图2:多类数据集图像示例

4. 数据集中存在许多混淆类别的垃圾,导致类别标签的不一致性。人工检查和更正标签可能有帮助,但也可能存在导致数据不匹配的风险(图3)。

图3:左右图为同一类物体,但在多类数据集中

左图被标定为食品塑料盒,而右图被标定为食品外包装盒

03Baseline

为了完成该比赛的任务,我们借鉴了其他大型的目标检测竞赛中的解决方案,如COCO、Objects365和OID。在这些解决方案中,我们借鉴了百度在OID 2019中的解决方案。Baseline模型选用的是基于Class-aware的Cascade R-CNN,且同时使用ResNet200-Vd作为模型的backbone并且加入了FPN、Dcnv2和Non-local方法来提高模型的整体效果。训练使用多尺度训练(480:1440:32)和常见的数据增强方法如水平翻转。

迁移学习可以在小数据集上获得良好的性能,因此在该比赛中使用该方法理论上应当可以取得较好的效果。因此,我们选择了COCO、Objects365和OID混合的预训练模型。具体效果如表1所示。

表1:使用不同预训练参数的Baseline的AP

训练方面,由于庞大的模型以及多尺度训练方法,所以在Tesla V100 上batch size只能设置为1,这里感谢华为NAIE提供的算力支持。使用引用动量的SGD作为训练的优化器。基础学习率设置为0.001,权重衰减速率为0.0001。使用了Cosine annealing with warmup的学习率调度策略,从0.0001的学习率开始,1000次迭代后到达基础学习率。我们训练Baseline进行了120K次迭代,训练时间大约40个小时。

04数据增强方案

为了减少在如此小的数据集上的过拟合,就需要大量的数据扩充。我们尝试了许多数据增强方案,最终发现RandomVerticalFlip、AutoAugment和GridMask能有效提高模型性能。

不同于自然图像,对于垃圾图像,水平翻转和垂直翻转的效果是等同的,因此我们使用了RandomVerticalFlip而并非RandomHorizontalFlip。

并且我们将广泛使用于图像分类中的AutoAugment方法迁移到了目标检测中。实验证明,该方法对各种目标检测数据集都是有效的。并且我们在baseline中尝试了三种不同的自动增强策略(表2),发现AutoAugment v0的效果是最好的,最终我们也使用了它。

表2:不同AutoAugment策略下模型的AP

再者我们使用了GridMask的数据增强方法,该方法包括random erasing、hide-and-seek、Dropout以及DropBlock。实验表明,GridMask可以有效减少目标检测的过拟合。并且使用GridMask长时间训练模型可以显著提高模型性能。在本实验中,我们尝试了不同概率和训练时间下的GridMask。如表3所示,使用GridMask的训练模型需要比baseline更长的训练时间。使用0.3的概率足以减少过拟合,且训练时间越长越好。概率为0.5和0.7甚至会导欠拟合的现象。所以如果以较高的GridMask概率训练超过300K次迭代理论上来说可以进一步提高结果。

表3:不同GridMask概率与迭代次数下模型的AP

05模型融合

在最终提交阶段,我们只能在RTX 2080上测试两个小时,但是模型大小不受限制。所以考虑到这些约束条件,我们训练了仅随机种子不同的6个相同的模型来进行模型融合,且使用了前面提到的所有有效技巧。同时使用了Top-k voting nms对6个模型的检测结果进行合并,设置top-k voting的nms的IoU阈值为0.7,该阈值与Cascade R-CNN第三阶段的IoU阈值一致。

06总结

最终我们在测试集上以0.910的成绩取得了第一名,我们认为我们能够取胜的原因主要有以下几点:

(1)参考了大型目标检测比赛前几名的方案

(2)使用了COCO,Object365以及OIDV5的混合预训练模型

(3)使用了多种数据增强方法

(4)在模型融合中使用了top-k voting nms

最后感谢华为提供的NAIE平台,为比赛训练提供了巨大的帮助,平台功能也十分强大。在我们使用平台遇到问题时,官方都及时地进行了解答和协助,十分的给力。我们也非常荣幸能有这次机会和大家分享这次比赛的历程,谢谢!

点击关注,第一时间了解华为云新鲜技术~

海华大赛第一名团队聊比赛经验和心得:AI在垃圾分类中的应用的更多相关文章

  1. 【干货】Kaggle 数据挖掘比赛经验分享(mark 专业的数据建模过程)

    简介 Kaggle 于 2010 年创立,专注数据科学,机器学习竞赛的举办,是全球最大的数据科学社区和数据竞赛平台.笔者从 2013 年开始,陆续参加了多场 Kaggle上面举办的比赛,相继获得了 C ...

  2. Kaggle 数据挖掘比赛经验分享

    文章发布于公号[数智物语] (ID:decision_engine),关注公号不错过每一篇干货. 来源 | 腾讯广告算法大赛 作者 | 陈成龙 Kaggle 于 2010 年创立,专注数据科学,机器学 ...

  3. Kaggle 数据挖掘比赛经验分享(转)

     原作者:陈成龙 简介 Kaggle 于 2010 年创立,专注数据科学,机器学习竞赛的举办,是全球最大的数据科学社区和数据竞赛平台.笔者从 2013 年开始,陆续参加了多场 Kaggle上面举办的比 ...

  4. ACM比赛经验

    这篇博客是转别人的,觉得很好,希望能在以后的现场赛中用上:ACM比赛经验 推荐此篇文章打印,与模板放在一起. 1. 比赛中评测会有些慢,偶尔还会碰到隔10分钟以上才返回结果的情况,这段时间不能等结果, ...

  5. 成功的背后!(给所有IT人)----转载:来自CSDN第一名博主

    转载:来自CSDN第一名博主:http://blog.csdn.net/phphot/article/details/2187505 放在这里激励你我! 正文: 成功的背后,有着许多不为人知的故事,而 ...

  6. Kaggle网站流量预测任务第一名解决方案:从模型到代码详解时序预测

    Kaggle网站流量预测任务第一名解决方案:从模型到代码详解时序预测 2017年12月13日 17:39:11 机器之心V 阅读数:5931   近日,Artur Suilin 等人发布了 Kaggl ...

  7. 教程 | Kaggle网站流量预测任务第一名解决方案:从模型到代码详解时序预测

    https://mp.weixin.qq.com/s/JwRXBNmXBaQM2GK6BDRqMw 选自GitHub 作者:Artur Suilin 机器之心编译 参与:蒋思源.路雪.黄小天 近日,A ...

  8. 一名3年工作经验的java程序员应该具备的职业技能

    一名3年工作经验的Java程序员应该具备的技能,这可能是Java程序员们比较关心的内容.我这里要说明一下,以下列举的内容不是都要会的东西—-但是如果你掌握得越多,最终能得到的评价.拿到的薪水势必也越高 ...

  9. 一名3年工作经验的java程序员应该具备的技能

    一名3年工作经验的Java程序员应该具备的技能,这可能是Java程序员们比较关心的内容.我这里要说明一下,以下列举的内容不是都要会的东西—-但是如果你掌握得越多,最终能得到的评价.拿到的薪水势必也越高 ...

随机推荐

  1. idea 快速生成返回值快捷方式

    idea java快速生成返回值   ctrl+alt+V

  2. Tallest Cow,题解

    题目链接 题意: 问满足一系列形如ab可以相互看到的约束的所有奶牛的最大身高(最高的编号和高度已给出) 分析: 首先,这个可以互相看到指的是中间的人比两头的都矮,一条斜线看到的不行,那么其实我们就可以 ...

  3. [TZOJ] 平台训练-V1

    日常训练 训练网址:http://www.tzcoder.cn/ 1001: 整数求和 描述求两个整数之和.输入输入数据只包括两个整数A和B.输出两个整数的和.样例输入1 2样例输出3题目来源TZOJ ...

  4. 一篇夯实一个知识点系列--python生成

    写在前面 本系列目的:一篇文章,不求鞭辟入里,但使得心应手. 迭代是数据处理的基石,在扫描内存无法装载的数据集时,我们需要一种惰性获取数据的能力(即一次获取一部分数据到内存).在Python中,具有这 ...

  5. Scala 面向对象(二):package 包 (一) 入门

    1 Scala包的基本介绍 和Java一样,Scala中管理项目可以使用包,但Scala中的包的功能更加强大,使用也相对复杂些,下面我们学习Scala包的使用和注意事项. 2 Scala包快速入门 使 ...

  6. python面试题七: mysql数据库

    ---------------------------------------------------------------------------------------------------- ...

  7. java 面向对象(三十四):泛型三 自定义泛型类、泛型接口、泛型方法

    1.举例: [Order.java] public class Order<T> { String orderName; int orderId; //类的内部结构就可以使用类的泛型 T ...

  8. 双网卡bonding

    网卡:计算机与外界局域网的连接是通过主机箱内插入一块网络接口板(或者是在笔记本电脑中插入一块PCMCIA卡).网络接口板又称为通信适配器或网络适配器(adapter)或网络接口卡NIC(Network ...

  9. 软件测试中的微信小程序怎么测试?

    1.没有需求文档时,如何测试小程序?现在大多数公司的开发模式是:敏捷模式(用户故事) ,即以什么身份做什么事情会出现什么样的结果.那实际测试过程中,没有需求文档时,测试可以采用以下方式更好的完成测试工 ...

  10. 三个Python自动化测试高效工具的使用总结

    ##Python语言的特点 Python 是一个高层次的结合了解释性.编译性.互动性和面向对象的脚本语言. Python 的设计具有很强的可读性,相比其他语言经常使用英文关键字,其他语言的一些标点符号 ...