由于本文过长,\(\LaTeX\) 炸了,分两篇,part1

优化

我们假装不会欧拉数的通项式(其实是因为它的通项式不容易继续优化?),使用容斥代替掉欧拉数

设 \(\begin{vmatrix}n\\k\end{vmatrix}\) 表示长度为 \(n\) 的排列,至少有 \(k\) 个小于号的方案数

容易发现,\(\begin{vmatrix}n\\k\end{vmatrix}=\sum\limits_{i=k}^n\dbinom ik\left<\begin{matrix}n\\i\end{matrix}\right>\)

二项式反演一下可以得到:\(\left<\begin{matrix}n\\k\end{matrix}\right>=\sum\limits_{i=k}^n(-1)^{i-k}\dbinom ik\begin{vmatrix}n\\i\end{vmatrix}\)

考虑计算 \(\begin{vmatrix}n\\k\end{vmatrix}\),我们将小于号视为一条边,则至少有 \(n-k\) 个连通块,这些连通块内的顺序是确定的,因为是用小于号连接的

由于是排列问题,则答案为每个块的 \(\mathbf{EGF}\) 卷起来

每个块的 \(\mathbf{EGF}\) 为 \(\mathbf{EGF\{[0,1,1,\cdots]\}}=e^x-1\),为什么常数项为 \(0\)?一个块至少要有一个数字嘛

则 \(\begin{vmatrix}n\\k\end{vmatrix}=n![x^n](e^x-1)^{n-k}\)

代入可得(\(ans_0\) 特判一下,下面就没有 \(\max(k,1)\)了):

\[\begin{aligned}

ans_k&=\sum\limits_{i=k}^n\dbinom ni(n-i)!\sum\limits_{j=k}^i(-1)^{j-k}\dbinom jki![x^i](e^x-1)^{i-j}\\

&=\sum\limits_{i=k}^n\dbinom ni(n-i)!i!\sum\limits_{j=k}^i(-1)^{j-k}\dbinom jk[x^i](e^x-1)^{i-j}\\

&=n!\sum\limits_{i=k}^n\sum\limits_{j=k}^i(-1)^{j-k}\dbinom jk[x^i](e^x-1)^{i-j}\\

&=n!\sum\limits_{j=k}^n(-1)^{j-k}\dbinom jk\sum\limits_{i=j}^n[x^i](e^x-1)^{i-j}\\

&=\dfrac{n!}{k!}\sum\limits_{j=k}^n\dfrac{(-1)^{j-k}j!}{(j-k)!}\sum\limits_{i=j}^n[x^i](e^x-1)^{i-j}\\

\end{aligned}\]

设 \(R_j=\sum\limits_{i=j}^n[x^i](e^x-1)^{i-j}\)

\[\begin{aligned}

ans_k&=\dfrac{n!}{k!}\sum\limits_{j=k}^n\dfrac{(-1)^{j-k}j!}{(j-k)!}R_j\\

&=\dfrac{n!}{k!}\sum\limits_{j=k}^n\dfrac{(-1)^{j-k}}{(j-k)!}\times R_j\cdot j!

\end{aligned}\]


这是一种特殊的卷积,求法参见关于一类特殊卷积的求法

问题转化为求出序列 \(R\)

我们发现 \(R_k\) 的定义式很难看,每一次取的系数都不是同一项的,把它改得漂亮一点:

\[\begin{aligned}

R_k&=\sum\limits_{i=k}^n[x^i](e^x-1)^{i-k}\\

&=\sum\limits_{i=k}^n[x^k](\dfrac{e^x-1}x)^{i-k}\\

&=\sum\limits_{i=0}^{n-k}[x^k](\dfrac{e^x-1}{x})^i

\end{aligned}\]

把它化成封闭形式,设 \(F(x)=\dfrac{e^x-1}{x}\):

\[\begin{aligned}

R_k&=\sum\limits_{i=0}^{n-k}[x^k]F^i(x)\\

&=[x^k]\left(\dfrac{1-F^{n-k+1}(x)}{1-F(x)}\right)\\

&=[x^k]\dfrac{1}{1-F(x)}-[x^k]\dfrac{F^{n-k+1}(x)}{1-F(x)}

\end{aligned}\]


对于前一项,我们可以多项式求逆,但是发现分母常数项为 \(0\),不能直接求逆

那怎么做呢?我们转为求 \(\dfrac{1}{(1-F(x))\cdot x^{-1}}\cdot x^{-1}\),这样就可以避免常数项为 \(0\) 的问题了(由于该式中分母一次项不为 \(0\),所以乘上 \(x^{-1}\) 表示左移一位)

对于正确性的说明,需要引入抽象代数中的分式环(分式域)概念,不展开了,可以百度搜索拉格朗日反演学习一下


则我们只需要求出后一项就做完了,设 \(S_k=[x^k]\dfrac{F^{n-k+1}(x)}{1-F(x)}\)

我们发现 \(S_k\) 很不优美,对于每一个 \(k\),它的多项式长得都不一样,这样我们不可能在低于 \(O(n^2)\) 的时间复杂度内求出

所以我们考虑引入一个新的限制 \(y\),并消除 \(x\) 的影响:

\[\begin{aligned}

S_k&=[x^k]\dfrac{F^{n-k+1}(x)}{1-F(x)}\\

&=[x^{n+1}]\dfrac{(xF(x))^{n-k+1}}{1-F(x)}\\

&=[x^{n+1}y^{n-k+1}]\sum\limits_{i=0}^{\infty}\dfrac{(xF(x))^{i}}{1-F(x)}\\

&=[x^{n+1}y^{n-k+1}]\dfrac{1}{1-F(x)}\cdot\dfrac{1}{1-xF(x)y}\\

\end{aligned}\]


即求出右面多项式 \([x^{n+1}]\) 项关于 \(y\) 的多项式,容易联想到多项式复合科技

但是不太行,因为 \(1-xF(x)y\) 中不仅有 \(F(x)\) 还有 \(x\)

考虑构造两个函数 \(H(x),W(x)\),使得 \(H(W(x))=\dfrac{1}{1-F(x)}\cdot\dfrac{1}{1-xF(x)y}\)

再构造一个函数 \(G(x)\),使得 \(G(W(x))=x\),这样我们就可以使用扩展拉格朗日反演求解了


构造如下:

\(W(x)=xF(x)\)

设 \(M(W(x))=F(x)\),即我们使用 \(M(x)\) 和 \(W(x)\) 复合来消除 \(W(x)\) 中的 \(x\)

则 \(\dfrac{1}{1-F(x)}\cdot\dfrac{1}{1-xF(x)y}=\dfrac{1}{1-M(W(x))}\cdot\dfrac{1}{1-W(x)y}\)

若要使得 \(H(W(x))=\dfrac{1}{1-F(x)}\cdot\dfrac{1}{1-xF(x)y}\),联系上一个式子,容易构造出 \(H(x)=\dfrac{1}{1-M(x)}\cdot \dfrac{1}{1-xy}\)

最后是 \(G(x)\),这个很简单,\(G(x)=\dfrac{x}{M(x)}\),因为此时 \(G(W(x))=\dfrac{xF(x)}{F(x)}=x\)


以上,我们构造出了拉格朗日反演所需的所有函数,直接套用扩展拉格朗日反演公式可得:

\[[x^{n+1}]H(W(x))=\dfrac1{n+1}[x^n]H'(x)\left(\dfrac{x}{G(x)}\right)^{n+1}
\]

暴力计算 \(H'(x)=\dfrac{y(1-M(x))+(1-xy)M'(x)}{(1-M(x))^2(1-xy)^2}\),代入:

\[\begin{aligned}

[x^{n+1}]H(W(x))&=\dfrac1{n+1}[x^n]\dfrac{y(1-M(x))+(1-xy)M'(x)}{(1-M(x))^2(1-xy)^2}\cdot M^{n+1}(x)\\

&=\dfrac1{n+1}[x^n]\left(\dfrac{y}{(1-M(x))(1-xy)^2}+\dfrac{M'(x)}{(1-M(x))^2(1-xy)}\right)\cdot M^{n+1}(x)

\end{aligned}\]

写到这里,公式已经不能看了 qwq,我们把关于 \(y\)的封闭形式展开,这样我们就可以提取出 \(y\) 的某一项啦

\[\begin{aligned}

[x^{n+1}]H(W(x))&=\dfrac1{n+1}[x^n]\left(\dfrac1{1-M(x)}\sum\limits_{i=0}^{\infty}(i+1)x^iy^{i+1}+\dfrac{M'(x)}{(1-M(x))^2}\sum\limits_{i=0}^{\infty}x^iy^i\right)\cdot M^{n+1}(x)\\

\end{aligned}\]

我们提取出第 \(m\) 项(\(S_k\) 需要的即第 \(n-k+1\) 项):

\[\begin{aligned}

&\dfrac1{n+1}[x^ny^m]\left(\dfrac1{1-M(x)}\sum\limits_{i=0}^{\infty}(i+1)x^iy^{i+1}+\dfrac{M'(x)}{(1-M(x))^2}\sum\limits_{i=0}^{\infty}x^iy^i\right)\cdot M^{n+1}(x)\\

=&\dfrac1{n+1}[x^n]\left(\dfrac{mx^{m-1}}{1-M(x)}+\dfrac{M'(x)x^m}{(1-M(x))^2}\right)\cdot M^{n+1}(x)\\

=&\dfrac1{n+1}\left([x^{n-m+1}]m\dfrac{M^{n+1}(x)}{1-M(x)}+[x^{n-m}]\dfrac{M'(x)M^{n+1}(x)}{(1-M(x))^2}\right)

\end{aligned}\]

发现出现了和上面同样的问题:分母的常数项为 \(0\),我们同上面一样转化一下:

\[=\dfrac1{n+1}[x^{n-m+2}]\left(m\dfrac{M^{n+1}(x)}{(1-M(x))x^{-1}}+\dfrac{M'(x)M^{n+1}(x)}{((1-M(x))x^{-1})^2}\right)
\]

突然发现我们还没有求 \(M(x)=\dfrac x{G(x)}\)

\(G(W(x))=G(e^x-1)=x\),容易构造出 \(G(x)=\ln(x+1)\)

则 \(M(x)=\dfrac x{\ln(x+1)}\)

最终时间复杂度 \(O(n\log n)\)

真是一道休闲的好题呢

代码

CF1349F 【Slime and Sequences】part2的更多相关文章

  1. CF1349F 【Slime and Sequences】part1

    由于本文过长,\(\LaTeX\) 炸了,分两篇,part2 题目描述 定义一个正整数序列为好序列,当且仅当如果某个数 \(k\) 出现过,那么一定有 \(k-1\) 在最后一个 \(k\) 的前面出 ...

  2. 【K8S学习笔记】Part2:获取K8S集群中运行的所有容器镜像

    本文将介绍如何使用kubectl列举K8S集群中运行的Pod内的容器镜像. 注意:本文针对K8S的版本号为v1.9,其他版本可能会有少许不同. 0x00 准备工作 需要有一个K8S集群,并且配置好了k ...

  3. 【模式识别与机器学习】——PART2 机器学习——统计学习基础——Regularized Linear Regression

    来源:https://www.cnblogs.com/jianxinzhou/p/4083921.html 1. The Problem of Overfitting (1) 还是来看预测房价的这个例 ...

  4. 【字符串算法3】浅谈KMP算法

    [字符串算法1] 字符串Hash(优雅的暴力) [字符串算法2]Manacher算法 [字符串算法3]KMP算法 这里将讲述  [字符串算法3]KMP算法 Part1 理解KMP的精髓和思想 其实KM ...

  5. 【leetcode 字符串处理】Compare Version Numbers

    [leetcode 字符串处理]Compare Version Numbers @author:wepon @blog:http://blog.csdn.net/u012162613 1.题目 Com ...

  6. 【九度OJ】题目1442:A sequence of numbers 解题报告

    [九度OJ]题目1442:A sequence of numbers 解题报告 标签(空格分隔): 九度OJ 原题地址:http://ac.jobdu.com/problem.php?pid=1442 ...

  7. 【开源】简单4步搞定QQ登录,无需什么代码功底【无语言界限】

    说17号发超简单的教程就17号,qq核审通过后就封装了这个,现在放出来~~ 这个是我封装的一个开源项目:https://github.com/dunitian/LoTQQLogin ————————— ...

  8. 【夯实PHP基础】PHP数组,字符串,对象等基础面面观

    本文地址 分享提纲 1.数组篇 2.字符创篇 3.函数篇 4.面向对象篇 5.其他篇 /*************************** 一.数组篇 Begin***************** ...

  9. 【Java学习系列】第3课--Java 高级教程

    本文地址 可以拜读: 从零开始学 Java 分享提纲: 1. Java数据结构 2. Java 集合框架 3. Java泛型 4. Java序列化 5. Java网络编程 6. Java发送Email ...

随机推荐

  1. 深入理解JVM(③)线程与Java的线程

    前言 我们都知道,线程是比进程更轻量级的调度执行单位,线程的引入,可以把一个进程的资源分配和执行调度分开,各个线程既可以共享进程资源调度(内存地址.文件I/O等),又可以独立调度. 线程的实现 主流的 ...

  2. python爬虫拉钩网:{'msg': '您操作太频繁,请稍后再访问', 'clientIp': '113.57.176.181', 'success': False}

    反爬第一课: 在打印html.text的时候总会提示 {'success': False, 'msg': '您操作太频繁,请稍后再访问', 'clientIp': '113.14.1.254'} 需要 ...

  3. 数据可视化基础专题(十二):Matplotlib 基础(四)常用图表(二)气泡图、堆叠图、雷达图、饼图、

    1 气泡图 气泡图和上面的散点图非常类似,只是点的大小不一样,而且是通过参数 s 来进行控制的,多的不说,还是看个示例: 例子一: import matplotlib.pyplot as plt im ...

  4. 数据可视化之分析篇(六)使用Power BI进行流失客户分析

    https://zhuanlan.zhihu.com/p/73358029 为了提升销量,在不断吸引新客户的同时,还要防止老客户离你而去,但每一个顾客不可能永远是你的客户,不可避免的都会经历新客户.活 ...

  5. Unity-ECS(一)浅谈CPU缓存命中和Unity面向数据技术栈(DOTS)--笔记

    一,缓存类型 概念:局部性. 时间局部性:当前用到的一个存储器位置,不久的将来会被用到. 空间局部性:当前用到的一个存储器位置,附近的位置会被用到. 那么在CPU的层面,这两个局部性的特性就会被Cac ...

  6. 一次HTTP请求服务的完整过程-请求处理过程

    0.DNS域名解析:递归查询.迭代查询 递归查询:客户端向第一个服务器查询,给最终结果 迭代查询:第一个服务器向根查询 1 .建立连接:接收或拒绝连接请求:三次握手的过程 提高HTTP 连接性能: 并 ...

  7. 重磅分享:美团点评架构师私藏的内部Linux运维笔记

    最近不少小伙伴后台联系,希望能弄一些大厂的学习资料,我这边费了很大劲,联系到老朋友,原美团点评架构师张sir,问他要了些美团点评架构的内部资料. 这份资料含金量非常高,包含整个美团点评架构架构图,Li ...

  8. 题解 CF920F 【SUM and REPLACE】

    可以事先打表观察每个数的约数个数,观察到如果进行替换,若干次后这个数便会被替换成1. 所以我们可以直接暴力的进行区间修改,若这个数已经到达1或2,则以后就不再修改,用并查集和树状数组进行维护. 这个方 ...

  9. 性能测试必备知识(5)- 深入理解“CPU 上下文切换”

    做性能测试的必备知识系列,可以看下面链接的文章哦 https://www.cnblogs.com/poloyy/category/1806772.html 前言 上一篇文章中,举例了大量进程等待 CP ...

  10. SQL 更新删除

    -- 插入数据 INSERT INTO [ Salary ] VALUES(25451,4545,45 ) INSERT INTO [ Salary ] (编号,收入,支出) VALUES(25451 ...