P1774 最接近神的人_NOI导刊2010[树状数组 逆序对 离散化]
题目描述
破解了符文之语,小FF开启了通往地下的道路。当他走到最底层时,发现正前方有一扇巨石门,门上雕刻着一幅古代人进行某种活动的图案。而石门上方用古代文写着“神的殿堂”。小FF猜想里面应该就有王室的遗产了。但现在的问题是如何打开这扇门……
仔细研究后,他发现门上的图案大概是说:古代人认为只有智者才是最容易接近神明的。而最聪明的人往往通过一种仪式选拔出来。仪式大概是指,即将隐退的智者为他的候选人写下一串无序的数字,并让他们进行一种操作,即交换序列中相邻的两个元素。而用最少的交换次数使原序列变成不下降序列的人即是下一任智者。
小FF发现门上同样有着n个数字。于是他认为打开这扇门的秘诀就是找到让这个序列变成不下降序列所需要的最小次数。但小FF不会……只好又找到了你,并答应事成之后与你三七分……
输入输出格式
输入格式:
第一行为一个整数n,表示序列长度
第二行为n个整数,表示序列中每个元素。
输出格式:
一个整数ans,即最少操作次数。
输入输出样例
4
2 8 0 3
3
样例说明:开始序列为2 8 0 3,目标序列为0 2 3 8,可进行三次操作的目标序列:
1.Swap (8,0):2 0 8 3
2.Swap (2,0):0 2 8 3
3.Swap (8,3):0 2 3 8
说明
对于30%的数据1≤n≤10^4。
对于100%的数据1≤n≤5*10^5;
-maxlongint≤A[i]≤maxlongint。
复习一下离散化
二分查找里面一定是x和mp[m]比较,不是和m比较
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
const int N=5e5+,INF=1e6+;
typedef long long ll;
inline ll read(){
char c=getchar();ll x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int n;
ll a[N],mp[N];
inline int Bin(ll x){
int l=,r=n;
while(l<=r){
int m=(l+r)/;
if(mp[m]==x) return m;
else if(x<mp[m]) r=m-;
else l=m+;
}
return l;
}
int c[N];
inline int lowbit(int x){return x&-x;}
inline void add(int p,int v){
for(;p<=n;p+=lowbit(p)) c[p]+=v;
}
inline int sum(int p){
int res=;
for(;p>;p-=lowbit(p)) res+=c[p];
return res;
} int main(){
n=read();
for(int i=;i<=n;i++) a[i]=mp[i]=read();
sort(mp+,mp++n);
ll ans=;
for(int i=;i<=n;i++){
int x=Bin(a[i]);
add(x,);
ans+=i-sum(x);
}
printf("%lld",ans);
}
还有一种离散化写法,定义一个num数组,sort时用a值排序sort,num[i]就是a[i]离散化后的结果了
P1774 最接近神的人_NOI导刊2010[树状数组 逆序对 离散化]的更多相关文章
- P1774 最接近神的人_NOI导刊2010提高(02)
P1774 最接近神的人_NOI导刊2010提高(02) 关于此题为什么可以使用求逆序对的方法来做 假设一个数\(a_i\),且前\(i-1\)个数已经成为单调增的数列. 我们要从前\(a_1\)至\ ...
- 洛谷——P1966 火柴排队&&P1774 最接近神的人_NOI导刊2010提高(02)
P1966 火柴排队 这题贪心显然,即将两序列中第k大的数的位置保持一致,证明略: 树状数组求逆序对啦 浅谈树状数组求逆序对及离散化的几种方式及应用 方法:从前向后每次将数插入到bit(树状数组)中, ...
- 洛谷P1774 最接近神的人_NOI导刊2010提高(02) [2017年6月计划 线段树03]
P1774 最接近神的人_NOI导刊2010提高(02) 题目描述 破解了符文之语,小FF开启了通往地下的道路.当他走到最底层时,发现正前方有一扇巨石门,门上雕刻着一幅古代人进行某种活动的图案.而石门 ...
- 洛谷P1774 最接近神的人_NOI导刊2010提高(02)(求逆序对)
To 洛谷.1774 最接近神的人 题目描述 破解了符文之语,小FF开启了通往地下的道路.当他走到最底层时,发现正前方有一扇巨石门,门上雕刻着一幅古代人进行某种活动的图案.而石门上方用古代文写着“神的 ...
- luogu P1774 最接近神的人_NOI导刊2010提高(02)
题目描述 破解了符文之语,小FF开启了通往地下的道路.当他走到最底层时,发现正前方有一扇巨石门,门上雕刻着一幅古代人进行某种活动的图案.而石门上方用古代文写着“神的殿堂”.小FF猜想里面应该就有王室的 ...
- 洛谷 P1774 最接近神的人_NOI导刊2010提高(02)
题目描述 破解了符文之语,小FF开启了通往地下的道路.当他走到最底层时,发现正前方有一扇巨石门,门上雕刻着一幅古代人进行某种活动的图案.而石门上方用古代文写着“神的殿堂”.小FF猜想里面应该就有王室的 ...
- 【luogu P1774 最接近神的人_NOI导刊2010提高(02)】 题解
题目链接:https://www.luogu.org/problemnew/show/P1774 归并排序求逆序对. #include <cstdio> #define livelove ...
- 洛谷——P1774 最接近神的人_NOI导刊2010提高(02)
https://www.luogu.org/problem/show?pid=1774 题目描述 破解了符文之语,小FF开启了通往地下的道路.当他走到最底层时,发现正前方有一扇巨石门,门上雕刻着一幅古 ...
- luoguP1774 最接近神的人_NOI导刊2010提高(02)x
P1774 最接近神的人_NOI导刊2010提高(02) 题目描述 破解了符文之语,小FF开启了通往地下的道路.当他走到最底层时,发现正前方有一扇巨石门,门上雕刻着一幅古代人进行某种活动的图案.而石门 ...
随机推荐
- 转:什么是即时编译(JIT)!?OpenJDK HotSpot VM剖析
重点 应用程序可以选择一个适当的即时编译器来进行接近机器级的性能优化. 分层编译由五层编译构成. 分层编译提供了极好的启动性能,并指导编译的下一层编译器提供高性能优化. 提供即时编译相关诊断信息的JV ...
- JAVA中常说的三大框架指:SSH
即:spring.Struts.hibernate Spring:功能强大的组件粘合济,能够将你的所有的Java功能模块用配置文件的方式组合起来(还让你感觉不到spring的存在)成为一个完成的应用 ...
- 深入Java关键字this的用法的总结
在Java程序设计中经常会见到this的使用,this使得程序设计变得规范.简单.灵活.但是在使用过程中,在不同场 合它的含义并不完全相同,使用不当还会出现错误, 本文对this的几种用法和出现的问题 ...
- 设计模式学习之路——Facade 外观模式(结构型模式)
动机: 组件的客户和组件中各种复杂的子系统有了过多的耦合,随着外部客户程序和各子系统的演化,这种过多的耦合面临很多变化的挑战.如何简化外部客户程序和系统间的交互接口?如何将外部客户程序的演化和内部子系 ...
- javascript 中的location.href 并不是立即执行的,是在所在function 执行完之后执行的。
javascript 中的location.href 并不是立即执行的,是在所在function 执行完之后执行的. 1 function getUrl(tp) { if (tp == 'd') { ...
- SharePoint 2013 状态机工作流之UpdateItemActivity
没什么可说的,一个Activity的使用介绍,其他类似的Activity也可以参考这个使用. 1.添加ApplyActivation和UpdateItemActivity,在onWorkflowAct ...
- 一个有趣的CM
系统 : Windows xp 程序 : Crackme#3 - Self Destructed 程序下载地址 :http://pan.baidu.com/s/1kVxwlaZ 要求 : 注册机编写 ...
- Sharepoint学习笔记—习题系列--70-573习题解析 -(Q133-Q135)
Question 133You create a Web Part that updates a list.You need to ensure that users can use the Web ...
- 自定义AlertDialog控件的使用(AndroidStudio)
AlertDialog 第一种:可随意自定义控件 第一步:自定义弹出的页面 ,新建一个XML页面 如下图 不需要Activity 第二步:在主页面设置一个按钮弹出上图页面 (下面是主要代码 调用 ...
- iOS 学习 - 24 全局跑马灯,支持后台回到前台
思路: 1.创建一个单例 + (instancetype)shareManager { static CCPaomaView *pModel = nil; static dispatch_once_t ...