题目传送门

题意:有多种汇币,汇币之间可以交换,这需要手续费,当你用100A币交换B币时,A到B的汇率是29.75,手续费是0.39,那么你可以得到(100 - 0.39) * 29.75 = 2963.3975 B币。

题解:我们可以用货币种类编号建图,在图上任意两点表示兑换关系并且是双向的,值得注意的是货币A没有兑换是的权值是不变的,而A兑换成B那么B的权值就是(k-Cab)*Rab,那么我们只要Floyd跑一边。然后判断是否存在一个dis[v]>dis[i]+w;

代码:

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<string>
using namespace std;
const int maxn=1e3+5;
double dis[maxn];
int n,m,o;
double sum;
struct node
{
int u,v;
double r,c;
}e[maxn];
bool floyd()
{
dis[o]=sum;
for(int k=1;k<=n;k++)
{
bool flag=false;
for(int i=0;i<2*m;i++)
{
int u=e[i].u;
int v=e[i].v;
double r=e[i].r;
double c=e[i].c;
if(dis[v]<(dis[u]-c)*r)
{
dis[v]=(dis[u]-c)*r;
flag=true;
}
}
if(!flag) break;
}
for(int i=0;i<2*m;i++)
{
int u=e[i].u;
int v=e[i].v;
double r=e[i].r;
double c=e[i].c;
if(dis[v]<(dis[u]-c)*r)
{
return true;
}
}
return false;
}
int main()
{
scanf("%d%d%d%lf",&n,&m,&o,&sum);
int k=0;
for(int i=1;i<=m;i++)
{
int a,b;
double r1,c1,r2,c2;
scanf("%d%d%lf%lf%lf%lf",&a,&b,&r1,&c1,&r2,&c2);
e[k].u=a;
e[k].v=b;
e[k].r=r1;
e[k].c=c1;
k++;
e[k].u=b;
e[k].v=a;
e[k].r=r2;
e[k].c=c2;
k++;
}
memset(dis,0,sizeof dis);
if(floyd()) puts("YES");
else puts("NO");
return 0;
}

POj1860(floyd+正权回路)的更多相关文章

  1. Bellman_ford货币兑换——正权回路判断

    POJ1860 题目大意:你在某一点有一些钱,给定你两点之间钱得兑换规则,问你有没有办法使你手里的钱增多.就是想看看转一圈我的钱能不能增多,出现这一点得条件就是有兑换钱得正权回路,所以选择用bellm ...

  2. 图论 --- spfa + 链式向前星 : 判断是否存在正权回路 poj 1860 : Currency Exchange

    Currency Exchange Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 19881   Accepted: 711 ...

  3. poj 1860 Currency Exchange (SPFA、正权回路 bellman-ford)

    链接:poj 1860 题意:给定n中货币.以及它们之间的税率.A货币转化为B货币的公式为 B=(V-Cab)*Rab,当中V为A的货币量, 求货币S通过若干此转换,再转换为原本的货币时是否会添加 分 ...

  4. POJ1860-Currency Exchange (正权回路)【Bellman-Ford】

    <题目链接> <转载于 >>> > 题目大意: 有多种汇币,汇币之间可以交换,这需要手续费,当你用100A币交换B币时,A到B的汇率是29.75,手续费是0. ...

  5. Currency Exchange 货币兑换 Bellman-Ford SPFA 判正权回路

    Description Several currency exchange points are working in our city. Let us suppose that each point ...

  6. POJ 1860 Currency Exchange(最短路&spfa正权回路)题解

    题意:n种钱,m种汇率转换,若ab汇率p,手续费q,则b=(a-q)*p,你有第s种钱v数量,问你能不能通过转化让你的s种钱变多? 思路:因为过程中可能有负权值,用spfa.求是否有正权回路,dis[ ...

  7. [ACM] hdu 1217 Arbitrage (bellman_ford最短路,推断是否有正权回路或Floyed)

    Arbitrage Problem Description Arbitrage is the use of discrepancies in currency exchange rates to tr ...

  8. HDU - 1317 ~ SPFA正权回路的判断

    题意:有最多一百个房间,房间之间连通,到达另一个房间会消耗能量值或者增加能量值,求是否能从一号房间到达n号房间. 看数据,有定5个房间,下面有5行,第 iii 行代表 iii 号 房间的信息,第一个数 ...

  9. POJ 3259 Wormholes(最短路&spfa正权回路)题解

    题意:给你m条路花费时间(双向正权路径),w个虫洞返回时间(单向负权路径),问你他能不能走一圈回到原点之后,时间倒流. 思路:题意有点难看懂,我们建完边之后找一下是否存在负权回路,存在则能,反之不能. ...

随机推荐

  1. springboot(六)Email demo

    项目中经常使用邮件发送提醒功能,比如说更新安全机制,发送邮件通知用户等 一.简单邮件发送 导入依赖: <dependency> <groupId>org.springframe ...

  2. SpringBoot 全局视角看springboot

    从单体架构到微服务 单体架构 任何一个网站在发布初期几乎都不可能立马就拥有庞大的用户流量和海量数据,都是在不停 的试错过程中一步一步演变其自身架构,满足其自身业务.比如现在能够抗住双十一这么大 流量的 ...

  3. 关于st表的推导

    #include <bits/stdc++.h> using namespace std; const int maxn=1e6+7; int st[maxn][32]; int a[ma ...

  4. SQLite在C#的使用

    SQLite在C#的使用 http://www.cnblogs.com/SharkBin/archive/2012/11/03/2752277.html System.Data.SQLite.DLL的 ...

  5. Web Performance API

    Web Performance API 性能监测/性能优化 https://developer.mozilla.org/en-US/docs/Web/API/Performance https://d ...

  6. js types & primitive & object

    js types & primitive & object js 数据类型 typeof null // "object" typeof undefined // ...

  7. c++ win32 关机 注销 重启

    #include <iostream> #include <Windows.h> #pragma comment(lib, "user32.lib") #p ...

  8. js web简单的路由管理器

    灵感来自此博客和此库 index.html <!DOCTYPE html> <html lang="en"> <head> <meta c ...

  9. java安全管理器SecurityManager

    本文转载自java安全管理器SecurityManager 导语 这是一篇对Java安全管理器入门的文章,目的是简单了解什么是SecurityManager,对管理器进行简单配置,解决简单问题. 比如 ...

  10. [报错集]ubuntu中安装oracle java报错

    1.因为版本更新,JAVA15以前的版本都已经没办法下载了,所以要使用oracle java必须使用最近的java15 $ sudo apt-get install oracle-java15-ins ...