题目描述

涵涵有两盒火柴,每盒装有 n 根火柴,每根火柴都有一个高度。 现在将每盒中的火柴各自排成一列, 同一列火柴的高度互不相同, 两列火柴之间的距离定义为: ∑(ai-bi)^2

其中 ai 表示第一列火柴中第 i 个火柴的高度,bi 表示第二列火柴中第 i 个火柴的高度。

每列火柴中相邻两根火柴的位置都可以交换,请你通过交换使得两列火柴之间的距离最小。请问得到这个最小的距离,最少需要交换多少次?如果这个数字太大,请输出这个最小交换次数对 99,999,997 取模的结果。

输入输出格式

输入格式:

输入文件为 match.in。

共三行,第一行包含一个整数 n,表示每盒中火柴的数目。

第二行有 n 个整数,每两个整数之间用一个空格隔开,表示第一列火柴的高度。

第三行有 n 个整数,每两个整数之间用一个空格隔开,表示第二列火柴的高度。

输出格式:

输出文件为 match.out。

输出共一行,包含一个整数,表示最少交换次数对 99,999,997 取模的结果。

输入输出样例

输入样例#1:

【输入输出样例 1】
4
2 3 1 4
3 2 1 4
【输入输出样例 2】
4
1 3 4 2
1 7 2 4
输出样例#1:

【输入输出样例 1】
1
【输入输出样例 2】
2

说明

【输入输出样例说明1】

最小距离是 0,最少需要交换 1 次,比如:交换第 1 列的前 2 根火柴或者交换第 2 列的前 2 根火柴。

【输入输出样例说明2】

最小距离是 10,最少需要交换 2 次,比如:交换第 1 列的中间 2 根火柴的位置,再交换第 2 列中后 2 根火柴的位置。

【数据范围】

对于 10%的数据, 1 ≤ n ≤ 10;

对于 30%的数据,1 ≤ n ≤ 100;

对于 60%的数据,1 ≤ n ≤ 1,000;

对于 100%的数据,1 ≤ n ≤ 100,000,0 ≤火柴高度≤ maxlongint

这个题贪心的证明

假设第一列有两个数 a,b(a < b) 第二列有两个数 x,y(x < y)

那么看(a-x)^2+(b-y)^2与(a-y)^2+(b-x)^2哪个更小,哪个就更优

可以假设左边<右边,然后化简,将两边的二次方都去掉

化简后得 -ax-by < -ay-bx

再次移项得到 a(x-y)>b(x-y) 由于x-y是负数,化简后得 a < b,式子成立(意思就是如果左边>右边的话就与条件矛盾了)

那么显然小的配小的,大的配大的最优

那么我们目标就是a的第一大和b的第一大在一块,a的第i大和b的第i大在一块

那么我们可以固定一端移动另外一端,

固定a移动b,那么我们发现移动的时候按b的第几大为关键字进行移动,那么值为1的数不一定要移动到1这个位置

因为1这个下标索引不一定是a的第一大

所以我们发现一个显然成立的事实,那就是从一个乱序数组排序成有序数组的最少交换次数和一个有序数组还原成乱序数组的最小交换次数相同

那么就相当于,当前已经按目标位置排好序的序列到原位置的最少交换次数=原序列到各自移动到目标位置的序列的最少交换次数

因为等式右边难于实现,所以选择等价的左边的实现,先让他跑到应该到的位置,然后跑回原位,这就是解决方法(有点像时光倒流哦

附上代码 (套自己的模板所以有点长

 1 #include <iostream>
2 #include <cstdio>
3 #include <algorithm>
4 #include <cstring>
5 using namespace std;
6 const int maxn=1e5+7;
7 int N,w;
8 typedef long long ll;
9 ll t[maxn],q[maxn];
10 struct node{
11 int id,v;node(){};node(int id,int v):id(id),v(v){};
12 };
13 node a[maxn],b[maxn];
14 int lowbit(int x){
15 return x&-x;
16 }
17 void add(int n,int x){
18 while(n<=N){
19 t[n]+=x;
20 n+=lowbit(n);
21 }
22 }
23 ll sum(int n){
24 ll ans=0;
25 while(n){
26 ans=(ans+t[n]);
27 n-=lowbit(n);
28 }
29 return ans;
30 }
31 bool cmp1(node a,node b){
32 return a.v<b.v;
33 }
34 bool cmp2(node a,node b){
35 return a.id<b.id;
36 }
37 int main(){
38 int n,x;scanf("%d",&n);
39 for(int i=1;i<=n;++i){
40 scanf("%d",&x);
41 a[i]=node(i,x);
42 }
43 for(int i=1;i<=n;++i){
44 scanf("%d",&x);
45 b[i]=node(i,x);
46 }
47 sort(a+1,a+1+n,cmp1);
48 sort(b+1,b+1+n,cmp1);
49 int cnt=1,st=1,pre=a[1].v;
50 for(int i=2;i<=n;++i){
51 while(i<=n&&a[i].v==pre) i++;
52 for(int j=st;j<i;++j){
53 a[j].v=cnt;
54 }
55 st=i;pre=a[i].v;
56 cnt++;
57 }
58 for(int j=st;j<=n;++j) a[j].v=cnt;
59 //for(int i=1;i<=n;++i) printf("%d,",a[i].v);printf("\n");
60 cnt=1,st=1,pre=b[1].v;
61 for(int i=2;i<=n;++i){
62 while(i<=n&&b[i].v==pre) i++;
63 for(int j=st;j<i;++j){
64 b[j].v=cnt;
65 }
66 st=i;pre=b[i].v;
67 cnt++;
68 }
69 for(int j=st;j<=n;++j) b[j].v=cnt;
70 //for(int i=1;i<=n;++i) printf("%d,",b[i].v);printf("\n");
71 //sort(a+1,a+1+n,cmp2);sort(b+1,b+1+n,cmp2);
72 N=n;
73 for(int i=1;i<=n;++i){
74 q[a[i].id]=b[i].id;//也就是说,当前排名相同的两个位置,b[i].id的目标位置是a[i].id,
75 }
76 ll ans=0;
77 for(int i=n;i>=1;--i){
78 ans=(ans+sum(q[i]-1))%99999997;
79 add(q[i],1);
80 }
81 printf("%lld\n",ans);
82 return 0;
83 }

为什么按值排序呢,因为我们要对排名相同的配对,这是我们要的目标序列

洛谷p1966 火柴排队 (逆序对变形,目标排序的更多相关文章

  1. 洛谷P1966 火柴排队(逆序对)

    题意 题目链接 Sol 不算很难的一道题 首先要保证权值最小,不难想到一种贪心策略,即把两个序列中rank相同的数放到同一个位置 证明也比较trivial.假设\(A\)中有两个元素\(a, b\), ...

  2. [NOIP2013提高&洛谷P1966]火柴排队 题解(树状数组求逆序对)

    [NOIP2013提高&洛谷P1966]火柴排队 Description 涵涵有两盒火柴,每盒装有 n 根火柴,每根火柴都有一个高度. 现在将每盒中的火柴各自排成一列, 同一列火柴的高度互不相 ...

  3. 【刷题】洛谷 P1966 火柴排队

    题目描述 涵涵有两盒火柴,每盒装有 n 根火柴,每根火柴都有一个高度. 现在将每盒中的火柴各自排成一列, 同一列火柴的高度互不相同, 两列火柴之间的距离定义为: ∑(ai-bi)^2 其中 ai 表示 ...

  4. 洛谷 P1966 火柴排队 解题报告

    P1966 火柴排队 题目描述 涵涵有两盒火柴,每盒装有 \(n\) 根火柴,每根火柴都有一个高度. 现在将每盒中的火柴各自排成一列, 同一列火柴的高度互不相同, 两列火柴之间的距离定义为: \(\s ...

  5. luogu P1966 火柴排队 (逆序对)

    luogu P1966 火柴排队 题目链接:https://www.luogu.org/problemnew/show/P1966 显然贪心的想,排名一样的数相减是最优的. 证明也很简单. 此处就不证 ...

  6. 洛谷——P1966 火柴排队&&P1774 最接近神的人_NOI导刊2010提高(02)

    P1966 火柴排队 这题贪心显然,即将两序列中第k大的数的位置保持一致,证明略: 树状数组求逆序对啦 浅谈树状数组求逆序对及离散化的几种方式及应用 方法:从前向后每次将数插入到bit(树状数组)中, ...

  7. P1966 火柴排队——逆序对(归并,树状数组)

    P1966 火柴排队 很好的逆序对板子题: 求的是(x1-x2)*(x1-x2)的最小值: x1*x1+x2*x2-2*x1*x2 让x1*x2最大即可: 可以证明将b,c数组排序后,一一对应的状态是 ...

  8. P1966 火柴排队(逆序对)

    P1966 火柴排队 题目描述 涵涵有两盒火柴,每盒装有 n 根火柴,每根火柴都有一个高度. 现在将每盒中的火柴各自排成一列, 同一列火柴的高度互不相同, 两列火柴之间的距离定义为: ∑(ai-bi) ...

  9. 洛谷P1966 火柴排队 贪心+离散化+逆序对(待补充QAQ

    正解: 贪心+离散化+逆序对 解题报告: 链接在这儿呢quq 这题其实主要难在想方法吧我觉得?学长提点了下说用贪心之后就大概明白了,感觉没有很难 但是离散化这里还是挺有趣的,因为并不是能很熟练地掌握离 ...

  10. NOIP 2013 洛谷P1966 火柴排队 (树状数组求逆序对)

    对于a[],b[]两个数组,我们应选取其中一个为基准,再运用树状数组求逆序对的方法就行了. 大佬博客:https://www.cnblogs.com/luckyblock/p/11482130.htm ...

随机推荐

  1. 深度解读设备的“万能语言”HarmonyOS的分布式软总线能力

    摘要:本文分享鸿蒙分布式软总线,并对相关源代码进行解析,为在鸿蒙系统平台上工作的相关人员的信息参考和指导. 总线是一种内部结构,在计算机系统中,主机的各个部件通过总线相连,外部设备通过相应的接口电路再 ...

  2. 【2020CSP-S模拟赛day5】总结

    爆零自闭赛 写在前面 于2022.11.1 这一次题目质量很高(以至于什么都不会) 再一度体验了省选Orz.比赛大体情况,刨去std, wzc神仙230分,比剩下的加起来都高.zyz神仙60分. 其余 ...

  3. Python格式化处理json数据的方式

    1.问题 在遇到json数据的过程中,我们经常需要获取json数据中某个值的操作,如果是用get方法去取比较繁琐,接下来介绍两种方式来取值. 2.jsonpath来格式化处理json数据 2.1介绍 ...

  4. 超详细oracle 11g安装步骤 win版本

    1. 打开网址: https://edelivery.oracle.com 使用oracle 任意账号登录 账号:2696671285@qq.com 密码:Oracle123 感谢来自某位好心大佬的共 ...

  5. join 查询优化

    在开发中往往会出现查询多表联查的情况,那么就会用到 join 查询. Join查询种类 为了方便说明,先定义一个统一的表,下面再做例子. CREATE TABLE `t2` ( `id` int(11 ...

  6. 多路复用器Select、Poll、Epoll区别梳理

    注意:本文是本人的学习总结,可能存在理解上的错误,请带着怀疑眼光看待,如果有不准确的地方欢迎指出,疑义相与析.为了叙述完整性,前面有一些前置知识,可以根据目录直接看后面的详解部分. 前置知识 用户态与 ...

  7. 借助 AppleScript 一键打开工作空间

    我有个小毛病:同时只能在一个工程里工作. 假如让我开四五个 Webstorm,在工程里 A 改个Bug,然后又到工程 B 里加个需求,再去工程 C 发个版,切来切去一会儿就懵了. 于是有了这个项目:m ...

  8. GraphQL 在酒店系统上的实践

    https://mp.weixin.qq.com/s/Pmut13GYP-kwR2xm8fH-7Q

  9. Android字节码优化工具redex初探

    https://mp.weixin.qq.com/s/Og2TkGrZR490h9-KO23lmw 背景 apk瘦身和启动时间优化是移动端开发性能优化中经常被提到的两个问题.apk瘦身的常规做法有,s ...

  10. LOJ10104Blockade

    POI 2008 Byteotia 城市有 n 个城镇,m 条双向道路.每条道路连接两个不同的城镇,没有重复的道路,所有城镇连通.输出 n 个数,代表如果把第i  个点去掉,将有多少对点不能互通. 输 ...