A - 欧拉回路
Input测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是节点数N ( 1 < N < 1000 )和边数M;随后的M行对应M条边,每行给出一对正整数,分别是该条边直接连通的两个节点的编号(节点从1到N编号)。当N为0时输入结
束。Output每个测试用例的输出占一行,若欧拉回路存在则输出1,否则输出0。
Sample Input
3 3
1 2
1 3
2 3
3 2
1 2
2 3
0
Sample Output
1
0
1 #include <cstdio>
2 #include <cstring>
3 #define maxn 1001
4 #define inf 0x3f3f3f3f
5 int pre[maxn],b[maxn];
6 int find(int x)
7 {
8 return x==pre[x]?x:find(pre[x]);
9 }
10 void merge(int x,int y)
11 {
12 int tx=find(x);
13 int ty=find(y);
14 if(tx!=ty)
15 {
16 pre[ty]=tx;
17 }
18 }
19 int main()
20 {
21 int n,m;
22 while(~scanf("%d",&n)&&n)
23 {
24 memset(b,0,sizeof(b));
25 for(int i=1;i<=n;i++) pre[i]=i;
26 scanf("%d",&m);
27 for(int i=1;i<=m;i++)
28 {
29 int u,v;
30 scanf("%d%d",&u,&v);
31 b[u]++;
32 b[v]++;
33 merge(u,v);
34 }
35 int f=0,f1=0;
36 for(int i=1;i<=n;i++)
37 {
38 if(pre[i]==i) f1++;
39 if(b[i]%2) f++;//存在奇度点,说明是欧拉通路
40 }
41 if(f1==1&&f==0)
42 printf("1\n");
43 else
44 printf("0\n");
45 }
46 }
A - 欧拉回路的更多相关文章
- ACM/ICPC 之 混合图的欧拉回路判定-网络流(POJ1637)
//网络流判定混合图欧拉回路 //通过网络流使得各点的出入度相同则possible,否则impossible //残留网络的权值为可改变方向的次数,即n个双向边则有n次 //Time:157Ms Me ...
- [poj2337]求字典序最小欧拉回路
注意:找出一条欧拉回路,与判定这个图能不能一笔联通...是不同的概念 c++奇怪的编译规则...生不如死啊... string怎么用啊...cincout来救? 可以直接.length()我也是长见识 ...
- ACM: FZU 2112 Tickets - 欧拉回路 - 并查集
FZU 2112 Tickets Time Limit:3000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u P ...
- UVA 10054 the necklace 欧拉回路
有n个珠子,每颗珠子有左右两边两种颜色,颜色有1~50种,问你能不能把这些珠子按照相接的地方颜色相同串成一个环. 可以认为有50个点,用n条边它们相连,问你能不能找出包含所有边的欧拉回路 首先判断是否 ...
- POJ 1637 混合图的欧拉回路判定
题意:一张混合图,判断是否存在欧拉回路. 分析参考: 混合图(既有有向边又有无向边的图)中欧拉环.欧拉路径的判定需要借助网络流! (1)欧拉环的判定:一开始当然是判断原图的基图是否连通,若不连通则一定 ...
- codeforces 723E (欧拉回路)
Problem One-Way Reform 题目大意 给一张n个点,m条边的无向图,要求给每条边定一个方向,使得最多的点入度等于出度,要求输出方案. 解题分析 最多点的数量就是入度为偶数的点. 将入 ...
- UVa 12118 检查员的难题(dfs+欧拉回路)
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- UVA 10054 (欧拉回路) The Necklace
题目:这里 题意:有一种由彩色珠子连接而成的项链,每个珠子两半由不同颜色(由1到50的数字表示颜色)组成,相邻的两个珠子在接触的地方颜色相同,现在有一些零碎的珠子,确认它是否能 复原成完整的项链. 把 ...
- poj2513Colored Sticks(无向图的欧拉回路)
/* 题意:将两端涂有颜色的木棒连在一起,并且连接处的颜色相同! 思路:将每一个单词看成一个节点,建立节点之间的无向图!判断是否是欧拉回路或者是欧拉路 并查集判通 + 奇度节点个数等于2或者0 */ ...
- poj 1386 Play on Words(有向图欧拉回路)
/* 题意:单词拼接,前一个单词的末尾字母和后一个单词的开头字母相同 思路:将一个单词的开头和末尾单词分别做两个点并建一条有向边!然后判断是否存在欧拉回路或者欧拉路 再次强调有向图欧拉路或欧拉回路的判 ...
随机推荐
- 如何使用 VS Code开发.NET Core应用程序
Visual Studio Code(VS Code)是Microsoft为Windows,Linux和Mac操作系统开发的免费,跨平台,轻量级的源代码编辑器,它是源代码编辑器,而Visual Stu ...
- RCE - Pikachu
概述: 远程系统命令执行 一般出现这种漏洞,是因为应用系统从设计上需要给用户提供指定的远程命令操作的接口 比如我们常见的路由器.防火墙.入侵检测等设备的web管理界面上 一般会给用户提供一个ping操 ...
- ctfhub技能树—sql注入—整数型注入
打开靶机 查看页面信息 查看回显位 查询数据库名 查询表名 查询字段 查询字段信息 使用sqlmap食用效果更佳 查数据库名 python2 sqlmap.py -u http://challenge ...
- 透过现象看本质:Java类动态加载和热替换
摘要:本文主要介绍类加载器.自定义类加载器及类的加载和卸载等内容,并举例介绍了Java类的热替换. 最近,遇到了两个和Java类的加载和卸载相关的问题: 1) 是一道关于Java的判断题:一个类被首次 ...
- linux搭建简单samba服务器
1.安装需要的软体 yum install -y samba samba-client samba-common 2.创建samba需要的本地用户,创建samba服务使用的目录 Linux系统文件的读 ...
- [Usaco2007 Jan]Balanced Lineup 飞盘比赛
题目描述 每天,农夫 John 的N(1 <= N <= 50,000)头牛总是按同一序列排队. 有一天, John 决定让一些牛们玩一场飞盘比赛. 他准备找一群在对列中为置连续的牛来进行 ...
- 三十三:WEB漏洞-逻辑越权之水平垂直越权
水平和垂直越权 水平越权:可以获得同级别用户权限 垂直权限:享受高几个层次的用户权限 解释,原理,检测,利用,防御 通过更换的某个ID之类的身份标识,从而使得A账号获取(修改,删除)B账号的数据,通过 ...
- 使用Canal作为mysql的数据同步工具
一.Canal介绍 1.应用场景 在前面的统计分析功能中,我们采取了服务调用获取统计数据,这样耦合度高,效率相对较低,目前我采取另一种实现方式,通过实时同步数据库表的方式实现,例如我们要统计每天注册与 ...
- 面试官:你说说ReentrantLock和Synchronized区别
大家好!又和大家见面了.为了避免面试尴尬,今天同比较通俗语言和大家聊下ReentrantLock和Synchronized区别! 使用方式 Synchronized可以修饰实例方法,静态方法,代码块. ...
- 一文说通Dotnet的委托
简单的概念,也需要经常看看. 一.前言 先简单说说Delegate的由来.最早在C/C++中,有一个概念叫函数指针.其实就是一个内存指针,指向一个函数.调用函数时,只要调用函数指针就可以了,至于函 ...