To The Max

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 10920    Accepted Submission(s): 5229

Problem Description
Given
a two-dimensional array of positive and negative integers, a
sub-rectangle is any contiguous sub-array of size 1 x 1 or greater
located within the whole array. The sum of a rectangle is the sum of all
the elements in that rectangle. In this problem the sub-rectangle with
the largest sum is referred to as the maximal sub-rectangle.

As an example, the maximal sub-rectangle of the array:

0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2

is in the lower left corner:

9 2
-4 1
-1 8

and has a sum of 15.

 
Input
The
input consists of an N x N array of integers. The input begins with a
single positive integer N on a line by itself, indicating the size of
the square two-dimensional array. This is followed by N 2 integers
separated by whitespace (spaces and newlines). These are the N 2
integers of the array, presented in row-major order. That is, all
numbers in the first row, left to right, then all numbers in the second
row, left to right, etc. N may be as large as 100. The numbers in the
array will be in the range [-127,127].
 
Output
Output the sum of the maximal sub-rectangle.
 
Sample Input
4
0 -2 -7 0 9 2 -6 2
-4 1 -4 1 -1
8 0 -2
 
Sample Output
15
 
实质上是最大子段和问题,最大子矩阵我们将其所有的行都枚举出来,然后将其合并成一行,然后就可以用最大连续子段和求最大值,得到最大子矩阵。
 
最大子段和:
    令b[j]表示以位置 j 为终点的所有子区间中和最大的一个
    子问题:如j为终点的最大子区间包含了位置j-1,则以j-1为终点的最大子区间必然包括在其中
    如果b[j-1] >0, 那么显然b[j] = b[j-1] + a[j],用之前最大的一个加上a[j]即可,因为a[j]必须包含
    如果b[j-1]<=0,那么b[j] = a[j] ,因为既然最大,前面的负数必然不能使你更大
   状态转移方程 dp[j] = max(dp[j-1]+a[j],a[j])(0<j<=n)
#include<iostream>
#include<cstdio>
#include<algorithm>
#include <string.h>
#include <math.h>
using namespace std;
const int N = ;
int mp[N][N],b[N];
int n; int getMax()
{
int t = ,mx = -;
int dp[N+]= {};
for(int i=; i<=n; i++)///从1开始枚举
{
if(dp[i-]>) dp[i] = dp[i-]+b[i-];
else dp[i]=b[i-];
mx = max(mx,dp[i]);
}
return mx;
}
int solve()
{
int mx = -;
for(int i=; i<n; i++)
{
for(int j=i; j<n; j++)
{
memset(b,,sizeof(b));
for(int k=; k<n; k++)
for(int l=i; l<=j; l++)
b[k]+=mp[l][k];
mx = max(mx,getMax());
}
}
return mx;
}
int main()
{
while(scanf("%d",&n)!=EOF)
{
for(int i=; i<n; i++)
{
for(int j=; j<n; j++)
scanf("%d",&mp[i][j]);
}
int mx = solve();
printf("%d\n",mx);
}
return ;
}
 

hdu 1081(最大子矩阵)的更多相关文章

  1. hdu 1081(最大子矩阵和)

    题目很简单,就是个最大子矩阵和的裸题,看来算法课本的分析后也差不多会做了.利用最大子段和的O(n)算法,对矩阵的行(或列)进行 i和j的枚举,对于第 i到j行,把同一列的元素进行压缩,得到一整行的一维 ...

  2. HDU 1081 To The Max【dp,思维】

    HDU 1081 题意:给定二维矩阵,求数组的子矩阵的元素和最大是多少. 题解:这个相当于求最大连续子序列和的加强版,把一维变成了二维. 先看看一维怎么办的: int getsum() { ; int ...

  3. dp - 最大子矩阵和 - HDU 1081 To The Max

    To The Max Problem's Link: http://acm.hdu.edu.cn/showproblem.php?pid=1081 Mean: 求N*N数字矩阵的最大子矩阵和. ana ...

  4. hdu 1081 &amp; poj 1050 To The Max(最大和的子矩阵)

    转载请注明出处:http://blog.csdn.net/u012860063 Description Given a two-dimensional array of positive and ne ...

  5. HDU 1081 To the Max 最大子矩阵(动态规划求最大连续子序列和)

    Description Given a two-dimensional array of positive and negative integers, a sub-rectangle is any ...

  6. hdu 1081 dp问题:最大子矩阵和

    题目链接 题意:给你一个n*n矩阵,求这个矩阵的最大子矩阵和 #include<iostream> #include<cstdio> #include<string.h& ...

  7. hdu 1559 最大子矩阵

    最大子矩阵 Time Limit: 30000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Sub ...

  8. 【动态规划】HDU 1081 & XMU 1031 To the Max

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1081 http://acm.xmu.edu.cn/JudgeOnline/problem.php?i ...

  9. (DP)To The Max --HDU -- 1081

    链接: http://acm.hdu.edu.cn/showproblem.php?pid=1081 这道题使用到的算法是:预处理+最大连续子串和 如果会做最大连续子串和,那么理解这题就相对简单一些, ...

随机推荐

  1. Linux回收站(改写rm防止误删文件无法恢复)

    rm -rf 慎用 命令敲得多了,常在河边走,难免会湿鞋 昨天,一个手误,敲错了命令,把原本想要留的文件夹给rm -rf掉了 几天心血全木有了,靠,死的心都有了 经百度,google以及尝试无果,哎, ...

  2. Nginx 配置解析

    概述:本篇文章主要对Nginx配置文件中一些常用配置进行了讲解,和如何使用Docker进行安装Nginx.因为该文章是回首在工作闲暇之余整理的,还有待完善,如果有疑义和更好的建议的朋友可以留言给我. ...

  3. mysql语句进阶

    1.null mysql> create table worker(id int not null,name varchar(8) not null,pass varchar(20) not n ...

  4. push与createElement性能比较

    下面的实验是验证push()函数与CreateElement()函数在创建HTML元素的效率.可以看出,实用push()确实效率要比后者要高,不过究竟可以高出多少,还需要有专研精神的朋友去测试了,这里 ...

  5. 使用freemarker生成word、html时图片显示问题

    使用freemarker生成word.html时图片显示问题 博客分类: Java 使用freemarker生成word时图片显示问题使用freemarker生成html时图片显示问题使用iText生 ...

  6. Flash Sort

    FlashSort依然类似桶排,主要改进了对要使用的桶的预测,或者说,减少了无用桶的数量从而节省了空间,例如 待排数字[ 6 2 4 1 5 9 100 ]桶排需要100个桶,而flash sort则 ...

  7. VirtualBox4.3.12 安装ubuntu 14.04 分辨率过小(600*480)问题的解决方法

    作为.net程序员,一直都跟windows系统打交道,在同事的影响下,今天安装了Ubuntu 14. 安装完系统就遇到了这个麻烦事,找了好久才解决,因此记录下来,或许对和我一样的Ubuntu新手有帮助 ...

  8. 【BZOJ】1731: [Usaco2005 dec]Layout 排队布局

    [题意]给定按编号顺序站成一排的牛,给定一些约束条件如两牛距离不小于或不大于某个值,求1和n的最大距离.无解输出-1,无穷解输出-2. [算法]差分约束+最短路 [题解]图中有三个约束条件,依次分析: ...

  9. jquery的基础语法、选取元素、操作元素、加事件、挂事件及移除事件

    jquery基础知识 1.jquery文件的引入,所有的js代码要写在下面那段代码下面. <script src="../jquery-1.11.2.min.js">& ...

  10. 【洛谷 P3187】 [HNOI2007]最小矩形覆盖 (二维凸包,旋转卡壳)

    题目链接 嗯,毒瘤题. 首先有一个结论,就是最小矩形一定有条边和凸包重合.脑补一下就好了. 然后枚举凸包的边,用旋转卡壳维护上顶点.左端点.右端点就好了. 上顶点用叉积,叉积越大三角形面积越大,对应的 ...