[Lydsy1704月赛] 最小公倍佩尔数
4833: [Lydsy1704月赛]最小公倍佩尔数
Time Limit: 8 Sec Memory Limit: 128 MB
Submit: 202 Solved: 99
[Submit][Status][Discuss]
Description
令(1+sqrt(2))^n=e(n)+f(n)*sqrt(2),其中e(n),f(n)都是整数,显然有(1-sqrt(2))^n=e(n)-f(n)*sqrt(2)。令g(
Input
Output
对于每组测试数据,输出一行一个非负整数,表示这组数据的答案。
Sample Input
1 233
2 233
3 233
4 233
5 233
Sample Output
5
35
42
121
HINT
Source
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn=1e6+5; inline int add(int x,int y,const int ha){ x+=y; return x>=ha?x-ha:x;}
inline void ADD(int &x,int y,const int ha){ x+=y; if(x>=ha) x-=ha;}
inline int mul(int x,int y,const int ha){ return x*(ll)y%ha;} inline int ksm(int x,int y,const int ha){
int an=1;
for(;y;y>>=1,x=mul(x,x,ha)) if(y&1) an=mul(an,x,ha);
return an;
} int T,f[maxn],h[maxn],n,ans=0,p,now; inline void solve(){
f[1]=1; for(int i=2;i<=n;i++) f[i]=add(add(f[i-1],f[i-1],p),f[i-2],p); for(int i=1,inv;i<=n;i++){
h[i]=f[i],inv=ksm(h[i],p-2,p); for(int j=i*2;j<=n;j+=i) f[j]=mul(f[j],inv,p); now=mul(now,h[i],p);
ADD(ans,mul(now,i,p),p);
}
} int main(){
scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&p); ans=0,now=1,solve(); printf("%d\n",ans);
} return 0;
}
[Lydsy1704月赛] 最小公倍佩尔数的更多相关文章
- BZOJ4833: [Lydsy1704月赛]最小公倍佩尔数(min-max容斥&莫比乌斯反演)(线性多项式多个数求LCM)
4833: [Lydsy1704月赛]最小公倍佩尔数 Time Limit: 8 Sec Memory Limit: 128 MBSubmit: 240 Solved: 118[Submit][S ...
- BZOJ 4833: [Lydsy1704月赛]最小公倍佩尔数(数论 + 最值反演)
题面 令 \({(1+\sqrt 2)}^n=e(n)+f(n)*\sqrt2\) ,其中 \(e(n),f(n)\) 都是整数,显然有 \({(1-\sqrt 2)}^n=e(n)-f(n)*\sq ...
- 【bzoj 4833】[Lydsy1704月赛]最小公倍佩尔数
Description 令 $(1+\sqrt 2)^n=e(n)+\sqrt 2\cdot f(n)$ ,其中 $e(n),f(n)$ 都是整数,显然有 $(1-\sqrt 2)^n=e(n)-\s ...
- BZOJ4833: [Lydsy1704月赛]最小公倍佩尔数
Problem 传送门 Sol 容易得到 \[f_n=e_{n-1}+f_{n-1},e_{n-1}=f_{n-1}+e_{n-1},f_1=e_1=1\] 那么 \[f_n=2\times \sum ...
- 【BZOJ4833】最小公倍佩尔数(min-max容斥)
[BZOJ4833]最小公倍佩尔数(min-max容斥) 题面 BZOJ 题解 首先考虑怎么求\(f(n)\),考虑递推这个东西 \((1+\sqrt 2)(e(n-1)+f(n-1)\sqrt 2) ...
- [bzoj 4833]最小公倍佩尔数
传送门 Description Let \((1+\sqrt2)^n=e(n)+f(n)\cdot\sqrt2\) , both \(e(n)\) and \(f(n)\) are integer ...
- bzoj 4836 [Lydsy1704月赛]二元运算 分治FFT+生成函数
[Lydsy1704月赛]二元运算 Time Limit: 8 Sec Memory Limit: 128 MBSubmit: 577 Solved: 201[Submit][Status][Di ...
- BZOJ4831: [Lydsy1704月赛]序列操作(非常nice的DP& 贪心)
4831: [Lydsy1704月赛]序列操作 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 250 Solved: 93[Submit][Statu ...
- bzoj 4831 [Lydsy1704月赛]序列操作 dp
[Lydsy1704月赛]序列操作 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 203 Solved: 69[Submit][Status][Dis ...
随机推荐
- Vuejs - 组件式开发
初识组件 组件(Component)绝对是 Vue 最强大的功能之一.它可以扩展HTML元素,封装可复用代码.从较高层面讲,可以理解组件为自定义的HTML元素,Vue 的编译器为它添加了特殊强大的功能 ...
- HDU 2577 How to Type (字符串处理)
题目链接 Problem Description Pirates have finished developing the typing software. He called Cathy to te ...
- JS 本地属性与继承属性
判断是否拥有某种属性 1.in 运算符 var obj = {name:'jack'}; alert('name' in obj); // --> true alert('toString' i ...
- js_判断当前页面是否有网络和网络连接超时
2018-04-12 方法一:通过navigator.onLine属性判断,返回true为有联网状态,false为断网状态. //方法一 if(navigator.onLine) { console. ...
- js_时间戳和时间格式之间的转换。
关于我的理解,简单明了点: 时间戳:把一个日期使用一个数字表示出来,这个数字就是这个日期的秒数. 日期:就是我们常见的时间表现形式. 时间戳对于一般看时间不够直观明了,可是在程序的世界里作用可大了. ...
- linux运维记
nmap 127.0.0.1 命令查看当前服务器对外有多少端口,用于检查漏洞 vim ctrl+z ,jobs,fg 切换控制应用程序 vim 执行命令 #!sh aa.sh执行命令 运维系统监控开源 ...
- 5:django 常用函数
用django写view函数的时候,我们常常用到django.shortcuts里面的很多常用函数, 这节我们来看看这些函数的具体用法吧 render render(request, template ...
- 修改VNCSERVER 默认的分辨率的方法
vi /usr/bin/vncserver /1024 找到默认的1024*768修改为 :1680*1050 reboot 重启
- 阿里云Centos等更新源设置成阿里源方法。
https://help.aliyun.com/knowledge_detail/5974184.html ---------------------------------------------- ...
- [PAT] 1147 Heaps(30 分)
1147 Heaps(30 分) In computer science, a heap is a specialized tree-based data structure that satisfi ...