4833: [Lydsy1704月赛]最小公倍佩尔数

Time Limit: 8 Sec  Memory Limit: 128 MB
Submit: 202  Solved: 99
[Submit][Status][Discuss]

Description

令(1+sqrt(2))^n=e(n)+f(n)*sqrt(2),其中e(n),f(n)都是整数,显然有(1-sqrt(2))^n=e(n)-f(n)*sqrt(2)。令g(

n)表示f(1),f(2)…f(n)的最小公倍数,给定两个正整数n和p,其中p是质数,并且保证f(1),f(2)…f(n)在模p意义
下均不为0,请计算sigma(i*g(i)),1<=i<=n.其在模p的值。
 

Input

第一行包含一个正整数 T ,表示有 T 组数据,满足 T≤210 。接下来是测试数据。每组测试数据只占一行,包含
两个正整数 n 和 p ,满足 1≤n≤10^6,2≤p≤10^9+7 。保证所有测试数据的 n 之和不超过 3×10^6  。
 
 

Output

对于每组测试数据,输出一行一个非负整数,表示这组数据的答案。

 
 

Sample Input

5
1 233
2 233
3 233
4 233
5 233

Sample Output

1
5
35
42
121

HINT

 

Source

 
 
    一眼看去就是一道毒瘤数论题233333
    首先要把 f() 这个数列搞出来,把f(n)的表达式写出来,发现是 ∑ [i%2==1] * C(n,i) * (sqrt(2)^(i-1))。
    (打个表就可以发现 f(n) = 2 * f(n-1) + f(n-2) 了嘛 2333)
 
    显然类菲波那切数列(满足 f(n+m) = f(n+1) * f(m) + f(n) * f(m-1)) 都是满足 gcd(f(x) , f(y)) = f( gcd(x,y) )的啊,之后对指数做min_max容斥,就可以得到一坨子关于子集gcd乘乘除除的玩意,看起来还有点麻烦。。。
    于是可以再设 f(n) = π h(d) * [d|n] ,然后样把所有 f(gcd) 替换成 π h(),化简一下就可以发现 : g(i) = π h(j) * [j<=i] ,于是就可以直接做了QWQ
 
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn=1e6+5; inline int add(int x,int y,const int ha){ x+=y; return x>=ha?x-ha:x;}
inline void ADD(int &x,int y,const int ha){ x+=y; if(x>=ha) x-=ha;}
inline int mul(int x,int y,const int ha){ return x*(ll)y%ha;} inline int ksm(int x,int y,const int ha){
int an=1;
for(;y;y>>=1,x=mul(x,x,ha)) if(y&1) an=mul(an,x,ha);
return an;
} int T,f[maxn],h[maxn],n,ans=0,p,now; inline void solve(){
f[1]=1; for(int i=2;i<=n;i++) f[i]=add(add(f[i-1],f[i-1],p),f[i-2],p); for(int i=1,inv;i<=n;i++){
h[i]=f[i],inv=ksm(h[i],p-2,p); for(int j=i*2;j<=n;j+=i) f[j]=mul(f[j],inv,p); now=mul(now,h[i],p);
ADD(ans,mul(now,i,p),p);
}
} int main(){
scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&p); ans=0,now=1,solve(); printf("%d\n",ans);
} return 0;
}

  

[Lydsy1704月赛] 最小公倍佩尔数的更多相关文章

  1. BZOJ4833: [Lydsy1704月赛]最小公倍佩尔数(min-max容斥&莫比乌斯反演)(线性多项式多个数求LCM)

    4833: [Lydsy1704月赛]最小公倍佩尔数 Time Limit: 8 Sec  Memory Limit: 128 MBSubmit: 240  Solved: 118[Submit][S ...

  2. BZOJ 4833: [Lydsy1704月赛]最小公倍佩尔数(数论 + 最值反演)

    题面 令 \({(1+\sqrt 2)}^n=e(n)+f(n)*\sqrt2\) ,其中 \(e(n),f(n)\) 都是整数,显然有 \({(1-\sqrt 2)}^n=e(n)-f(n)*\sq ...

  3. 【bzoj 4833】[Lydsy1704月赛]最小公倍佩尔数

    Description 令 $(1+\sqrt 2)^n=e(n)+\sqrt 2\cdot f(n)$ ,其中 $e(n),f(n)$ 都是整数,显然有 $(1-\sqrt 2)^n=e(n)-\s ...

  4. BZOJ4833: [Lydsy1704月赛]最小公倍佩尔数

    Problem 传送门 Sol 容易得到 \[f_n=e_{n-1}+f_{n-1},e_{n-1}=f_{n-1}+e_{n-1},f_1=e_1=1\] 那么 \[f_n=2\times \sum ...

  5. 【BZOJ4833】最小公倍佩尔数(min-max容斥)

    [BZOJ4833]最小公倍佩尔数(min-max容斥) 题面 BZOJ 题解 首先考虑怎么求\(f(n)\),考虑递推这个东西 \((1+\sqrt 2)(e(n-1)+f(n-1)\sqrt 2) ...

  6. [bzoj 4833]最小公倍佩尔数

    传送门 Description   Let \((1+\sqrt2)^n=e(n)+f(n)\cdot\sqrt2\) , both \(e(n)\) and \(f(n)\) are integer ...

  7. bzoj 4836 [Lydsy1704月赛]二元运算 分治FFT+生成函数

    [Lydsy1704月赛]二元运算 Time Limit: 8 Sec  Memory Limit: 128 MBSubmit: 577  Solved: 201[Submit][Status][Di ...

  8. BZOJ4831: [Lydsy1704月赛]序列操作(非常nice的DP& 贪心)

    4831: [Lydsy1704月赛]序列操作 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 250  Solved: 93[Submit][Statu ...

  9. bzoj 4831 [Lydsy1704月赛]序列操作 dp

    [Lydsy1704月赛]序列操作 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 203  Solved: 69[Submit][Status][Dis ...

随机推荐

  1. Vuejs - 组件式开发

    初识组件 组件(Component)绝对是 Vue 最强大的功能之一.它可以扩展HTML元素,封装可复用代码.从较高层面讲,可以理解组件为自定义的HTML元素,Vue 的编译器为它添加了特殊强大的功能 ...

  2. HDU 2577 How to Type (字符串处理)

    题目链接 Problem Description Pirates have finished developing the typing software. He called Cathy to te ...

  3. JS 本地属性与继承属性

    判断是否拥有某种属性 1.in 运算符 var obj = {name:'jack'}; alert('name' in obj); // --> true alert('toString' i ...

  4. js_判断当前页面是否有网络和网络连接超时

    2018-04-12 方法一:通过navigator.onLine属性判断,返回true为有联网状态,false为断网状态. //方法一 if(navigator.onLine) { console. ...

  5. js_时间戳和时间格式之间的转换。

    关于我的理解,简单明了点: 时间戳:把一个日期使用一个数字表示出来,这个数字就是这个日期的秒数. 日期:就是我们常见的时间表现形式. 时间戳对于一般看时间不够直观明了,可是在程序的世界里作用可大了. ...

  6. linux运维记

    nmap 127.0.0.1 命令查看当前服务器对外有多少端口,用于检查漏洞 vim ctrl+z ,jobs,fg 切换控制应用程序 vim 执行命令 #!sh aa.sh执行命令 运维系统监控开源 ...

  7. 5:django 常用函数

    用django写view函数的时候,我们常常用到django.shortcuts里面的很多常用函数, 这节我们来看看这些函数的具体用法吧 render render(request, template ...

  8. 修改VNCSERVER 默认的分辨率的方法

    vi /usr/bin/vncserver /1024 找到默认的1024*768修改为 :1680*1050 reboot 重启

  9. 阿里云Centos等更新源设置成阿里源方法。

    https://help.aliyun.com/knowledge_detail/5974184.html ---------------------------------------------- ...

  10. [PAT] 1147 Heaps(30 分)

    1147 Heaps(30 分) In computer science, a heap is a specialized tree-based data structure that satisfi ...