2226: [Spoj 5971] LCMSum

Time Limit: 20 Sec  Memory Limit: 259 MB
Submit: 1949  Solved: 852
[Submit][Status][Discuss]

Description

Given
n, calculate the sum LCM(1,n) + LCM(2,n) + .. + LCM(n,n), where
LCM(i,n) denotes the Least Common Multiple of the integers i and n.

Input

The first line contains T the number of test cases. Each of the next T lines contain an integer n.

Output

Output T lines, one for each test case, containing the required sum.

Sample Input

3
1
2
5

Sample Output

1
4
55

HINT

Constraints

1 <= T <= 300000
1 <= n <= 1000000

Source

[Submit][Status][Discuss]

一个比较有用的式子:$$f(n)=\sum_{i=1}^{n}[gcd(i,n)=1]i$$$$f(1)=1\quad f(n)=\lfloor \frac{\varphi(n)*n}{2} \rfloor$$

然后按照套路化式子即可:https://blog.sengxian.com/solutions/bzoj-2226

线性筛WA两次,怎么回事啊?

 #include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=l; i<=r; i++)
typedef long long ll;
using namespace std; const int N=;
int n,T,tot,p[N],phi[N];
bool b[N];
ll g[N]; void pre(){
phi[]=;
for (int i=; i<N; i++){
if (!b[i]) p[++tot]=i,phi[i]=i-;
for (int j=; j<=tot && i*p[j]<N; j++){
int t=i*p[j]; b[t]=;
if (i%p[j]) phi[t]=(p[j]-)*phi[i];
else { phi[t]=p[j]*phi[i]; break; }
}
}
for (int i=; i<N; i++) for (int j=i; j<N; j+=i) g[j]+=1ll*phi[i]*i;
} int main(){
freopen("bzoj2226.in","r",stdin);
freopen("bzoj2226.out","w",stdout);
pre();
for (scanf("%d",&T); T--; ) scanf("%d",&n),printf("%lld\n",(n==)?:((n==)?:(g[n]+)*n/));
return ;
}

[BZOJ2226][SPOJ5971]LCMSum(莫比乌斯反演)的更多相关文章

  1. 【BZOJ2226】[Spoj 5971] LCMSum 莫比乌斯反演(欧拉函数?)

    [BZOJ2226][Spoj 5971] LCMSum Description Given n, calculate the sum LCM(1,n) + LCM(2,n) + .. + LCM(n ...

  2. BZOJ 2226: [Spoj 5971] LCMSum 莫比乌斯反演 + 严重卡常

    Code: #pragma GCC optimize(2) #include<bits/stdc++.h> #define setIO(s) freopen(s".in" ...

  3. BZOJ2226:[SPOJ5971]LCMSum

    Description Given n, calculate the sum LCM(1,n) + LCM(2,n) + .. + LCM(n,n), where LCM(i,n) denotes t ...

  4. [bzoj2226][Spoj5971]LCMSum_欧拉函数_线性筛

    LCMSum bzoj-2226 Spoj-5971 题目大意:求$\sum\limits_{i=1}^nlcm(i,n)$ 注释:$1\le n\le 10^6$,$1\le cases \le 3 ...

  5. 莫比乌斯反演&各种筛法

    不学莫反,不学狄卷,就不能叫学过数论 事实上大概也不是没学过吧,其实上赛季头一个月我就在学这东西,然鹅当时感觉没学透,连杜教筛复杂度都不会证明,所以现在只好重新来学一遍了(/wq 真·实现了水平的负增 ...

  6. hdu1695 GCD(莫比乌斯反演)

    题意:求(1,b)区间和(1,d)区间里面gcd(x, y) = k的数的对数(1<=x<=b , 1<= y <= d). 知识点: 莫比乌斯反演/*12*/ 线性筛求莫比乌 ...

  7. BZOJ 2154: Crash的数字表格 [莫比乌斯反演]

    2154: Crash的数字表格 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 2924  Solved: 1091[Submit][Status][ ...

  8. BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 4032  Solved: 1817[Submit] ...

  9. Bzoj2154 Crash的数字表格 乘法逆元+莫比乌斯反演(TLE)

    题意:求sigma{lcm(i,j)},1<=i<=n,1<=j<=m 不妨令n<=m 首先把lcm(i,j)转成i*j/gcd(i,j) 正解不会...总之最后化出来的 ...

随机推荐

  1. Spring的使用优点

    spring事物配置,声明式事务管理和基于@Transactional注解的使用 spring支持编程式事务管理和声明式事务管理两种方式. 编程式事务管理使用TransactionTemplate或者 ...

  2. HDU 4757 可持久化trie树

    首先如果给定一些数,询问这些数中哪个数^给定的数的值最大的话,我们可以建立一颗trie树,根连接的两条边分别为0,1,表示二进制下第15位,那么我们可以建立一颗trie树,每一条从根到叶子节点的链表示 ...

  3. hdu 1869 六度分离(最短路floyd)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1869 六度分离 Time Limit: 5000/1000 MS (Java/Others)    M ...

  4. Part2-HttpClient官方教程-Chapter3-HTTP状态管理

    ps:近日忙于课设与一个赛事的准备....时间真紧啊~~ 最初,HTTP被设计为一种无状态的,面向请求/响应的协议,它并没有为跨越多个逻辑相关的请求/响应交换的有状态会话做出特殊规定.随着HTTP协议 ...

  5. humble_USACO

    Humble Numbers For a given set of K prime numbers S = {p1, p2, ..., pK}, consider the set of all num ...

  6. 给自己立一个flag

    工作理念:做完!做对!做好!做优! 1.请教问题方面 遇到问题先自己想办法解决(限定时长为30分钟). 请教问题的时候,明确:“问题是什么,为什么错在那里,结果是什么” 2.博客 一周两篇左右:对工作 ...

  7. linux sort排序命令

    1 sort的工作原理 sort将文件的每一行作为一个单位,相互比较,比较原则是从首字符向后,依次按ASCII码值进行比较,最后将他们按升序输出. 2 sort的-u选项 在输出行中去除重复行. $ ...

  8. Linux操作系统中内存buffer和cache的区别--从free命令说起(转)

    原文链接:http://os.51cto.com/art/200709/56603.htm 我们一开始,先从Free命令说起. Free free 命令相对于top 提供了更简洁的查看系统内存使用情况 ...

  9. FineReport——JS二次开发(局部刷新)

    在FR中,可以通过在form表单设置多个报表模板,然后通过对某一模板刷新实现局部刷新的功能,在cpt模板中,由于只存在一个模板,所以无法实现局部刷新. 其实,最好的局部刷新办法是自定义一个页面,然后添 ...

  10. 【python】pip的使用

    来源:http://www.ttlsa.com/python/how-to-install-and-use-pip-ttlsa/ pip是用来安装python相关的包的.使用参数如下: # pip - ...