前面我们已经说了logistic回归,训练样本是(且这里的是d维,下面模型公式的x是d+1维,其中多出来的一维是截距横为1,这里的y=±1也可以写成其他的值,这个无所谓不影响模型,只要是两类问题就可以),训练好这个模型中参数θ以后(或者是这个模型,这俩是一个模型),然后给入一个新的,我们就可以根据模型来预测对应label=1或0的概率了。

前面处理的是两类问题,我们想把这个两类问题扩展,即根据训练好的模型,给入一个新的,我们就可以根据模型来预测对应label=1,2,…k等多个值的概率。我们首先也是最重要的部分是确定这个新的模型是什么。对于一个x,新的模型(j=1,2..k)要加起来等于1.

我们假设新模型为:

……………………………………..……………………………………………………………………(1)

(这里模型中的是经过前面的处理后的,每一个都增加了一维

其中 是模型的参数在实现Softmax回归时,将 用一个 的矩阵来表示会很方便,该矩阵是将 按行罗列起来得到的,如下所示:

这里说一个问题:在logistic回归中,是两类问题,我们只用了一个θ,这里我们是不是也可以只用k-1个θk就可以表示所有的模型呢?具体就是我们只需要把置为0.所以=1,这样带入公式(1)中就可以少使用一个,我们验证一下,如果k=2即两类问题时,这个模型就退化成logistic回归,我们令θ2=0,那么我们得到:

  ,得证。所以说我们的参数矩阵确实存在参数冗余,这个问题,下面还会继续说。

接下来我们要做的是求cost function:

我们知道logistic的cost function(不加约束项)为,即把每个样本带入其label 对应的模型公式里(的label是1,就把代入,是0就代入),然后把所有样本带入模型得到的结果相乘再取对数log(对数运算也就是每个样本带入模型得到的结果再相加),取平均。我们这里同样这样做,只是因为这里类别计较多,我们使用一个”示性函数‘’来使公式表达整洁:

是示性函数,其取值规则为: 值为真的表达式 值为假的表达式

举例来说,表达式 的值为1 ,的值为 0。

我们的代价函数为(不加约束项):

我们知道对logistic回归模型的cost function 最小化,这里以梯度下降法进行说明:

这里的θ是一个k*(n+1)的矩阵,对应着模型里面的所有参数,我们现在有一个θ参数矩阵值

,那么我们通过梯度下降法得到的新的θ’参数矩阵值是多少呢,怎么求?是这样的,比如我们更新θ(1,1)这个参数目前对应的值,

首先我们求对θ(1,1)这一个参数的偏导:

求导得到的是一个数(即把所有和目前的θ参数矩阵值带入左边这个公式得到的结果即是,而不是还需要θ的第一个元素增加一个增量什么的,因为这里已经对θ(1,1)求导了)。有的地方是按梯度更新的,梯度是一个向量,但梯度也是分别对每一个参数求导得到的数,然后组成的向量。这里这么写是为了便于理解(在程序中还是以矩阵运算进行的,所以跟这个公式会有出入,但是核心思想是一样的)。然后新的θ’参数矩阵值的第一个元素θ’(1,1)=θ(1,1)-a。然后利用同样的方法得到新的参数矩阵值θ’的其他元素θ’(v,u)。我们得到θ’后,我们按这种方法再次迭代得到新的参数矩阵值θ”…..最后得到使收敛的模型参数。

这时候我们讨论一下前面提到的参数冗余问题:

现在我们模型的参数矩阵θ求好了,那么我们有一个样本,我们想求下这个样本对应的label等于各个i(i=1,2…k)的概率即利用

这时候我们让矩阵θ的每一行 都变成 ()。那么对任意的j,j∈,有

也就是说参数矩阵θ的每一行都减去减去某一个常向量得到新的参数矩阵θ’,那么这两个参数矩阵是等价的,即一个样本对应的label等于各个i(i=1,2…k)的概率在两个参数矩阵下是一样的。这时候我们假设如果参数 是代价函数 的极小值点,那么 同样也是它的极小值点,其中 可以为任意向量。因此使 最小化的解不是唯一的。(有趣的是,由于 仍然是一个凸函数,如果是只是用梯度下降法的话,不会遇到局部最优解的问题。但是 Hessian 矩阵是奇异的/不可逆的,这会直接导致采用牛顿法优化就遇到数值计算的问题,所以我们还是要寻找在使用梯度下降、牛顿法或其他算法时都可以解决参数冗余所带来的数值问题的办法)

这时候我们可以考虑这个等于某一个,那么这个就变成了0向量,这样新的参数矩阵就少了一组变量,只需要k-1组,我们就可以构建模型,这样我们的cost function的优化结果只有唯一解。并且在logistic公式中我们也是这么做的,前面已经证明了。

在实际应用中,为了使算法实现更简单清楚,往往保留所有参数 ,而不任意地将某一参数设置为 0。但此时我们需要对代价函数做一个改动:加入权重衰减。权重衰减可以解决 softmax 回归的参数冗余所带来的数值问题。

我们通过添加一个权重衰减项 来修改代价函数,这个衰减项会惩罚过大的参数值,现在我们的代价函数变为:

那为什么加入这个权重衰减项也就是L2正则项后,就可以解决参数冗余所带来的数值问题?

有了这个权重衰减项以后 (

),代价函数就变成了严格的凸函数,这样就可以保证得到唯一的解了。 此时的 Hessian矩阵变为可逆矩阵,并且因为

是凸函数,梯度下降法和 L-BFGS 等算法可以保证收敛到全局最优解。

在优化参数每次迭代得到新的θ‘时,与前面的相比,我们这里只要需要改变上面的a,即上面的a还要加上一个数。你要更新θ元素的某个元素θ(v,u),就是把对应的a变成:a加上正则项权重lamuda倍的原参数矩阵对应的元素θ(v,u),从而得到a’,然后更新θ’(v,u)=θ(v,u)-迭代速率α倍的a’。

softmax回归(理论部分解释)的更多相关文章

  1. DNN:逻辑回归与 SoftMax 回归方法

    UFLDL Tutorial 翻译系列:http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial 第四章:SoftMax回归 简介: ...

  2. 机器学习之线性回归---logistic回归---softmax回归

    在本节中,我们介绍Softmax回归模型,该模型是logistic回归模型在多分类问题上的推广,在多分类问题中,类标签 可以取两个以上的值. Softmax回归模型对于诸如MNIST手写数字分类等问题 ...

  3. 机器学习 —— 基础整理(五)线性回归;二项Logistic回归;Softmax回归及其梯度推导;广义线性模型

    本文简单整理了以下内容: (一)线性回归 (二)二分类:二项Logistic回归 (三)多分类:Softmax回归 (四)广义线性模型 闲话:二项Logistic回归是我去年入门机器学习时学的第一个模 ...

  4. 线性回归、Logistic回归、Softmax回归

    线性回归(Linear Regression) 什么是回归? 给定一些数据,{(x1,y1),(x2,y2)…(xn,yn) },x的值来预测y的值,通常地,y的值是连续的就是回归问题,y的值是离散的 ...

  5. UFLDL深度学习笔记 (二)SoftMax 回归(矩阵化推导)

    UFLDL深度学习笔记 (二)Softmax 回归 本文为学习"UFLDL Softmax回归"的笔记与代码实现,文中略过了对代价函数求偏导的过程,本篇笔记主要补充求偏导步骤的详细 ...

  6. 1.线性回归、Logistic回归、Softmax回归

    本次回归章节的思维导图版总结已经总结完毕,但自我感觉不甚理想.不知道是模型太简单还是由于自己本身的原因,总结出来的东西感觉很少,好像知识点都覆盖上了,但乍一看,好像又什么都没有.不管怎样,算是一次尝试 ...

  7. Haskell手撸Softmax回归实现MNIST手写识别

    Haskell手撸Softmax回归实现MNIST手写识别 前言 初学Haskell,看的书是Learn You a Haskell for Great Good, 才刚看到Making Our Ow ...

  8. 小白学习之pytorch框架(4)-softmax回归(torch.gather()、torch.argmax()、torch.nn.CrossEntropyLoss())

    学习pytorch路程之动手学深度学习-3.4-3.7 置信度.置信区间参考:https://cloud.tencent.com/developer/news/452418 本人感觉还是挺好理解的 交 ...

  9. Softmax回归

    Reference: http://ufldl.stanford.edu/wiki/index.php/Softmax_regression http://deeplearning.net/tutor ...

随机推荐

  1. zookeer安装

    解压:tar xf zookeeper-3.4.9.tar.gz进入目录cd /opt/zookeeper-3.4.9/ 编辑配置文件:vim zoo.cfg# The number of milli ...

  2. curl: (60) SSL certificate problem: unable to get local issuer certificate

    国内私募机构九鼎控股打造APP,来就送 20元现金领取地址:http://jdb.jiudingcapital.com/phone.html 内部邀请码:C8E245J (不写邀请码,没有现金送) 国 ...

  3. laravel queue队列使用

    一篇文章: laravel中的队列服务跟其他队列服务也没有什么不同,都是最符合人类思维的最简单最普遍的流程:有一个地方存放队列信息,一个PHP进程在运行时将任务写入,另外一个PHP守护进程轮询队列信息 ...

  4. MySQL 数据备份,Pymysql模块(Day47)

    阅读目录 一.IDE工具介绍 二.MySQL数据备份 三.Pymysql模块 一.IDE工具介绍 生产环境还是推荐使用mysql命令行,但为了方便我们测试,可以使用IDE工具 下载链接:https:/ ...

  5. SHELL —— grep命令+正则表达式

    一 什么是正则 正则就是用一些具有特殊含义的符号组合到一起(称为正则表达式)来描述字符或者字符串的方法.或者说:正则就是用来描述一类事物的规则. 生活中处处都是正则: 比如我们描述:4条腿 你可能会想 ...

  6. Codeforces Round #468(div2)

    A Friends Meeting 题意:有两个人在数轴上的不同位置,现在他们需要到一个位置碰面.每次每人只能向左或向右走1个单位,轮流进行.每个人第一次走时疲劳度+1,第二次走时疲劳度+2,以此类推 ...

  7. k8s使用ceph作为后端存储挂载

    一.在ceph集群上操作: 1.创建池(主要使用存储类来进行持久卷的挂载,其他的挂载方式不好使也太麻烦):ceph osd pool create k8s 64 二.在k8s上操作: 1.安装客户端( ...

  8. eclipse添加tomcat运行时

    方法一:添加jar包 方法二配置依赖 比如缺少javax.servlet.http.HttpServlet,ctrol+shift+t查找这个包 <dependencies> <de ...

  9. linux centos7 安装zookeeper

    linux 系统下 zookeeper 安装教程 1.下载安装包 1)进入安装目录 cd /home/install/ 2)下载 wget http://mirror.bit.edu.cn/apach ...

  10. winform webbrowser禁用网页target=blank

    /// <summary> /// 屏蔽target=_blank 的弹出窗口 /// </summary> /// <param name="sender&q ...