【spark】RDD操作
RDD操作分为转换操作和行动操作。
对于RDD而言,每一次的转化操作都会产生不同的RDD,供一个操作使用。
我们每次转换得到的RDD是惰性求值的
也就是说,整个转换过程并不是会真正的去计算,而是只记录了转换的轨迹。
当遇到行动操作的时候,才会发生真正的计算,从DAG图的源头开始进行“从头到尾”的计算。
常见的操作
操作类型 |
函数名 |
作用 |
转化操作 |
map() |
参数是函数,函数应用于RDD每一个元素,返回值是新的RDD |
flatMap() |
参数是函数,函数应用于RDD每一个元素,将元素数据进行拆分,变成迭代器,返回值是新的RDD |
|
filter() |
参数是函数,函数会过滤掉不符合条件的元素,返回值是新的RDD |
|
distinct() |
没有参数,将RDD里的元素进行去重操作 |
|
union() |
参数是RDD,生成包含两个RDD所有元素的新RDD |
|
intersection() |
参数是RDD,求出两个RDD的共同元素 |
|
subtract() |
参数是RDD,将原RDD里和参数RDD里相同的元素去掉 |
|
cartesian() |
参数是RDD,求两个RDD的笛卡儿积 |
|
行动操作 |
collect() |
返回RDD所有元素 |
count() |
RDD里元素个数 |
|
countByValue() |
各元素在RDD中出现次数 |
|
reduce() |
并行整合所有RDD数据,例如求和操作 |
|
fold(0)(func) |
和reduce功能一样,不过fold带有初始值 |
|
aggregate(0)(seqOp,combop) |
和reduce功能一样,但是返回的RDD数据类型和原RDD不一样 |
|
foreach(func) |
对RDD每个元素都是使用特定函数 |
除此之外我们还用到过的转换操作还有
1.groupByKey():应用于(K,V)键值对的数据集,返回一个新的(K,Iterable)形式的数据集
2.reduceByKey(func):应用于(K,V)键值对的数据集,返回一个新的(K,V)形式的数据集
其中每个值是将每个Key传入到func中进行聚合。
除此之外我们还用到过的行动操作还有
1.first():返回数据集的第一个元素
2.take(n):以数组形式返回数据集的前n个元素。
示例
转化操作
val rddInt:RDD[Int] = sc.makeRDD(List(1,2,3,4,5,6,2,5,1)
val rddStr:RDD[String] = sc.parallelize(Array("a","b","c","d","b","a"), 1)
val rddFile:RDD[String] = sc.textFile(path, 1)
val rdd01:RDD[Int] = sc.makeRDD(List(1,3,5,3))
val rdd02:RDD[Int] = sc.makeRDD(List(2,4,5,1))
/* map操作 */
println("======map操作======")
println(rddInt.map(x => x + 1).collect().mkString(","))
println("======map操作======") /* filter操作 */
println("======filter操作======")
println(rddInt.filter(x => x > 4).collect().mkString(","))
println("======filter操作======") /* flatMap操作 */
println("======flatMap操作======")
println(rddFile.flatMap { x => x.split(",") }.first())
println("======flatMap操作======") /* distinct去重操作 */
println("======distinct去重======")
println(rddInt.distinct().collect().mkString(","))
println(rddStr.distinct().collect().mkString(","))
println("======distinct去重======") /* union操作 */
println("======union操作======")
println(rdd01.union(rdd02).collect().mkString(","))
println("======union操作======") /* intersection操作 */
println("======intersection操作======")
println(rdd01.intersection(rdd02).collect().mkString(","))
println("======intersection操作======") /* subtract操作 */
println("======subtract操作======")
println(rdd01.subtract(rdd02).collect().mkString(","))
println("======subtract操作======") /* cartesian操作 */
println("======cartesian操作======")
println(rdd01.cartesian(rdd02).collect().mkString(","))
println("======cartesian操作======")
行动操作
val rddInt:RDD[Int] = sc.makeRDD(List(1,2,3,4,5,6,2,5,1))
val rddStr:RDD[String] = sc.parallelize(Array("a","b","c","d","b","a"), 1)
/* count操作 */
println("======count操作======")
println(rddInt.count())
println("======count操作======") /* countByValue操作 */
println("======countByValue操作======")
println(rddInt.countByValue())
println("======countByValue操作======") /* reduce操作 */
println("======countByValue操作======")
println(rddInt.reduce((x, y) => x + y))
println("======countByValue操作======") /* fold操作 */
println("======fold操作======")
println(rddInt.fold(0)((x, y) => x + y))
println("======fold操作======") /* aggregate操作 */
println("======aggregate操作======")
val res: (Int, Int) = rddInt.aggregate((0, 0))((x, y) => (x._1 + x._2, y),
(x, y) => (x._1 + x._2, y._1 + y._2))
println(res._1 + "," + res._2)
println("======aggregate操作======") /* foreach操作 */
println("======foeach操作======")
println(rddStr.foreach { x => println(x) })
println("======foeach操作======")
【spark】RDD操作的更多相关文章
- Spark RDD操作(1)
https://www.zybuluo.com/jewes/note/35032 RDD是什么? RDD是Spark中的抽象数据结构类型,任何数据在Spark中都被表示为RDD.从编程的角度来看,RD ...
- Spark RDD 操作
1. Spark RDD 创建操作 1.1 数据集合 parallelize 可以创建一个能够并行操作的RDD.其函数定义如下: ) scala> sc.defaultParallelism ...
- spark RDD操作的底层实现原理
RDD操作闭包外部变量原则 RDD相关操作都需要传入自定义闭包函数(closure),如果这个函数需要访问外部变量,那么需要遵循一定的规则,否则会抛出运行时异常.闭包函数传入到节点时,需要经过下面的步 ...
- Spark RDD操作之Map系算子
在linux系统上安装solrCloud 1.依赖: JRE solr7.3 需要 java1.8 独立的zookeeper服务 ,zookeeper安装请参考: http://zookeeper.a ...
- Spark学习(一)--RDD操作
标签(空格分隔): 学习笔记 Spark编程模型的两种抽象:RDD(Resilient Distributed Dataset)和两种共享变量(支持并行计算的广播变量和累加器). RDD RDD是一种 ...
- Spark RDD/Core 编程 API入门系列之动手实战和调试Spark文件操作、动手实战操作搜狗日志文件、搜狗日志文件深入实战(二)
1.动手实战和调试Spark文件操作 这里,我以指定executor-memory参数的方式,启动spark-shell. 启动hadoop集群 spark@SparkSingleNode:/usr/ ...
- Spark编程模型及RDD操作
转载自:http://blog.csdn.net/liuwenbo0920/article/details/45243775 1. Spark中的基本概念 在Spark中,有下面的基本概念.Appli ...
- Spark 键值对RDD操作
键值对的RDD操作与基本RDD操作一样,只是操作的元素由基本类型改为二元组. 概述 键值对RDD是Spark操作中最常用的RDD,它是很多程序的构成要素,因为他们提供了并行操作各个键或跨界点重新进行数 ...
- Spark RDD、DataFrame原理及操作详解
RDD是什么? RDD (resilientdistributed dataset),指的是一个只读的,可分区的分布式数据集,这个数据集的全部或部分可以缓存在内存中,在多次计算间重用. RDD内部可以 ...
- spark RDD 常见操作
fold 操作 区别 与 co 1.mapValus 2.flatMapValues 3.comineByKey 4.foldByKey 5.reduceByKey 6.groupByKey 7.so ...
随机推荐
- 我的Android进阶之旅------>Android APP终极瘦身指南
首先声明,下面文字转载于: APK瘦身实践 http://www.jayfeng.com/2015/12/29/APK%E7%98%A6%E8%BA%AB%E5%AE%9E%E8%B7%B5/ APP ...
- Unity3d依赖于平台的编译
Unity的这一功能被命名为"依赖于平台的编译". 这包括了一些预编译处理指令,让你能够专门的针对不同的平台分开编译和运行一段代码. 此外,你能够在编辑器下运行一些代码用于測试而不 ...
- Socket类的用法
原文:http://www.cnblogs.com/Elijah/archive/2011/11/29/2268047.html Socket可以理解成一个IP地址加一个端口,构成的一个“插座”... ...
- 在vps主机上***
一.安装 Shadowsocks服务端: 1.下载软件包 yum install python-setuptools && easy_install pip pip install s ...
- 笔记2:Jmeter核心组件
资料来源:开源优测 微信公众号,作者:苦叶子 Jmeter核心组件 1.Thread Group(线程组) 2.逻辑控制器,配置元件,定时器,前置处理器,Sample,后置处理器,断言,监听器: 3. ...
- gh-ost原理
gh-ost原理 一.三种模式架构图 1.连上从库,在主库上修改 这是gh-ost默认的工作模式,它会查看从库情况,找到集群的主库并且连接上去,对主库侵入最少,大体步骤是: 在主库上创建_xxx_gh ...
- Bean的id、name、ref、refid
Spring中Bean的命名 1.每个Bean可以有一个id属性,并可以根据该id在IoC容器中查找该Bean,该id属性值必须在IoC容器中唯一: 2.可以不指定id属性,只指定全限定类名,如: & ...
- MySQL详解--锁,事务(转)
锁是计算机协调多个进程或线程并发访问某一资源的机制.在数据库中,除传统的计算资源(如CPU.RAM.I/O等)的争用以外,数据也是一种供许多用户共享的资源.如何保证数据并发访问的一致性.有效性是所有数 ...
- Centos6.5安装python2.7与pip
安装Python2.7 安装环境 [root@localhost1 ~]# cat /etc/redhat-release CentOS release 6.5 (Final) [root@local ...
- linux新手学习之Arch Linux入门经验分享
我一直是以Ubuntu与Fedora作为新手入门的系统,但是其实我真正想推荐的是Arch,经过前面的学习,或许你对Linux已经有了一个大致的了解,现在如果你想加速你的步伐,也许可以看看本文.如果要问 ...