【spark】RDD操作
RDD操作分为转换操作和行动操作。
对于RDD而言,每一次的转化操作都会产生不同的RDD,供一个操作使用。
我们每次转换得到的RDD是惰性求值的
也就是说,整个转换过程并不是会真正的去计算,而是只记录了转换的轨迹。
当遇到行动操作的时候,才会发生真正的计算,从DAG图的源头开始进行“从头到尾”的计算。
常见的操作
操作类型 |
函数名 |
作用 |
转化操作 |
map() |
参数是函数,函数应用于RDD每一个元素,返回值是新的RDD |
flatMap() |
参数是函数,函数应用于RDD每一个元素,将元素数据进行拆分,变成迭代器,返回值是新的RDD |
|
filter() |
参数是函数,函数会过滤掉不符合条件的元素,返回值是新的RDD |
|
distinct() |
没有参数,将RDD里的元素进行去重操作 |
|
union() |
参数是RDD,生成包含两个RDD所有元素的新RDD |
|
intersection() |
参数是RDD,求出两个RDD的共同元素 |
|
subtract() |
参数是RDD,将原RDD里和参数RDD里相同的元素去掉 |
|
cartesian() |
参数是RDD,求两个RDD的笛卡儿积 |
|
行动操作 |
collect() |
返回RDD所有元素 |
count() |
RDD里元素个数 |
|
countByValue() |
各元素在RDD中出现次数 |
|
reduce() |
并行整合所有RDD数据,例如求和操作 |
|
fold(0)(func) |
和reduce功能一样,不过fold带有初始值 |
|
aggregate(0)(seqOp,combop) |
和reduce功能一样,但是返回的RDD数据类型和原RDD不一样 |
|
foreach(func) |
对RDD每个元素都是使用特定函数 |
除此之外我们还用到过的转换操作还有
1.groupByKey():应用于(K,V)键值对的数据集,返回一个新的(K,Iterable)形式的数据集
2.reduceByKey(func):应用于(K,V)键值对的数据集,返回一个新的(K,V)形式的数据集
其中每个值是将每个Key传入到func中进行聚合。
除此之外我们还用到过的行动操作还有
1.first():返回数据集的第一个元素
2.take(n):以数组形式返回数据集的前n个元素。
示例
转化操作
val rddInt:RDD[Int] = sc.makeRDD(List(1,2,3,4,5,6,2,5,1)
val rddStr:RDD[String] = sc.parallelize(Array("a","b","c","d","b","a"), 1)
val rddFile:RDD[String] = sc.textFile(path, 1)
val rdd01:RDD[Int] = sc.makeRDD(List(1,3,5,3))
val rdd02:RDD[Int] = sc.makeRDD(List(2,4,5,1))
/* map操作 */
println("======map操作======")
println(rddInt.map(x => x + 1).collect().mkString(","))
println("======map操作======") /* filter操作 */
println("======filter操作======")
println(rddInt.filter(x => x > 4).collect().mkString(","))
println("======filter操作======") /* flatMap操作 */
println("======flatMap操作======")
println(rddFile.flatMap { x => x.split(",") }.first())
println("======flatMap操作======") /* distinct去重操作 */
println("======distinct去重======")
println(rddInt.distinct().collect().mkString(","))
println(rddStr.distinct().collect().mkString(","))
println("======distinct去重======") /* union操作 */
println("======union操作======")
println(rdd01.union(rdd02).collect().mkString(","))
println("======union操作======") /* intersection操作 */
println("======intersection操作======")
println(rdd01.intersection(rdd02).collect().mkString(","))
println("======intersection操作======") /* subtract操作 */
println("======subtract操作======")
println(rdd01.subtract(rdd02).collect().mkString(","))
println("======subtract操作======") /* cartesian操作 */
println("======cartesian操作======")
println(rdd01.cartesian(rdd02).collect().mkString(","))
println("======cartesian操作======")
行动操作
val rddInt:RDD[Int] = sc.makeRDD(List(1,2,3,4,5,6,2,5,1))
val rddStr:RDD[String] = sc.parallelize(Array("a","b","c","d","b","a"), 1)
/* count操作 */
println("======count操作======")
println(rddInt.count())
println("======count操作======") /* countByValue操作 */
println("======countByValue操作======")
println(rddInt.countByValue())
println("======countByValue操作======") /* reduce操作 */
println("======countByValue操作======")
println(rddInt.reduce((x, y) => x + y))
println("======countByValue操作======") /* fold操作 */
println("======fold操作======")
println(rddInt.fold(0)((x, y) => x + y))
println("======fold操作======") /* aggregate操作 */
println("======aggregate操作======")
val res: (Int, Int) = rddInt.aggregate((0, 0))((x, y) => (x._1 + x._2, y),
(x, y) => (x._1 + x._2, y._1 + y._2))
println(res._1 + "," + res._2)
println("======aggregate操作======") /* foreach操作 */
println("======foeach操作======")
println(rddStr.foreach { x => println(x) })
println("======foeach操作======")
【spark】RDD操作的更多相关文章
- Spark RDD操作(1)
https://www.zybuluo.com/jewes/note/35032 RDD是什么? RDD是Spark中的抽象数据结构类型,任何数据在Spark中都被表示为RDD.从编程的角度来看,RD ...
- Spark RDD 操作
1. Spark RDD 创建操作 1.1 数据集合 parallelize 可以创建一个能够并行操作的RDD.其函数定义如下: ) scala> sc.defaultParallelism ...
- spark RDD操作的底层实现原理
RDD操作闭包外部变量原则 RDD相关操作都需要传入自定义闭包函数(closure),如果这个函数需要访问外部变量,那么需要遵循一定的规则,否则会抛出运行时异常.闭包函数传入到节点时,需要经过下面的步 ...
- Spark RDD操作之Map系算子
在linux系统上安装solrCloud 1.依赖: JRE solr7.3 需要 java1.8 独立的zookeeper服务 ,zookeeper安装请参考: http://zookeeper.a ...
- Spark学习(一)--RDD操作
标签(空格分隔): 学习笔记 Spark编程模型的两种抽象:RDD(Resilient Distributed Dataset)和两种共享变量(支持并行计算的广播变量和累加器). RDD RDD是一种 ...
- Spark RDD/Core 编程 API入门系列之动手实战和调试Spark文件操作、动手实战操作搜狗日志文件、搜狗日志文件深入实战(二)
1.动手实战和调试Spark文件操作 这里,我以指定executor-memory参数的方式,启动spark-shell. 启动hadoop集群 spark@SparkSingleNode:/usr/ ...
- Spark编程模型及RDD操作
转载自:http://blog.csdn.net/liuwenbo0920/article/details/45243775 1. Spark中的基本概念 在Spark中,有下面的基本概念.Appli ...
- Spark 键值对RDD操作
键值对的RDD操作与基本RDD操作一样,只是操作的元素由基本类型改为二元组. 概述 键值对RDD是Spark操作中最常用的RDD,它是很多程序的构成要素,因为他们提供了并行操作各个键或跨界点重新进行数 ...
- Spark RDD、DataFrame原理及操作详解
RDD是什么? RDD (resilientdistributed dataset),指的是一个只读的,可分区的分布式数据集,这个数据集的全部或部分可以缓存在内存中,在多次计算间重用. RDD内部可以 ...
- spark RDD 常见操作
fold 操作 区别 与 co 1.mapValus 2.flatMapValues 3.comineByKey 4.foldByKey 5.reduceByKey 6.groupByKey 7.so ...
随机推荐
- Redis、MongoDB及Memcached的区别 Redis(内存数据库)
Redis.MongoDB及Memcached的区别 Redis(内存数据库) 是一个key-value存储系统(布式内缓存,高性能的key-value数据库).和Memcached类似,它支持存储的 ...
- pycharm断点调试
step over 执行下一步 蓝色高亮的那一行表示准备执行的代码
- ServiceModel 元数据实用工具 (Svcutil.exe)
ServiceModel 元数据实用工具用于依据元数据文档生成服务模型代码,以及依据服务模型代码生成元数据文档 一.SvcUtil.exe ServiceModel 元数据实用工具可在 Windows ...
- kubernetes --> kube-dns 安装
准备yaml文件: 1.kubedns-cm.yaml # Copyright 2016 The Kubernetes Authors. # # Licensed under the Apache L ...
- UVALive 6911 F - Double Swords
思路:1.把所有有长度的剑看做点.Ai点是肯定要取.然后求另一把剑. 先对右区间排个序,然后每次看这个区间范围内有没有剑,如果没有就添加一把(值为右端点的剑): 如果有并且数量为1且这条龙的Ai等这把 ...
- System.Linq.Dynamic 动态查询
安装 VS->工具栏->NuGet程序管理器,System.Linq.Dynamic 注意: 使用动态查询必须先调用AsQueryable()方法,因为动态扩展仅适用于实现IQueryab ...
- @@fetch_status
@@fetch_status是MicroSoft SQL SERVER的一个全局变量 其值有以下三种,分别表示三种不同含义:[返回类型integer] 0 FETCH 语句成功 -1 FETCH 语句 ...
- 介绍Web项目中用到的几款JS日历日期控件和JS文本编辑框插件
第一款日历日期控件:layDate 官方网站:http://laydate.layui.com/ 第二款日历日期控件:my97 官方网站:http://www.my97.net/ 第三款 文本编辑器控 ...
- kali 2016:mount ntfs 分区只读 --Falling back to read-only mount because the NTFS partition is in an unsafe state.
mount ntfs 分区 mount /dev/sdb1 /mnt/d 提示: The disk contains an unclean file system (0, 0).Metadata ke ...
- 20145219 《Java程序设计》实验一 Java开发环境的熟悉(Linux + Eclipse)实验报告
20145219 <Java程序设计>实验一 Java开发环境的熟悉(Windws + IDEA)实验报告 实验内容 1.使用JDK编译.运行简单的Java程序: 2.使用IDEA 编辑. ...