1. ISpout接口

ISpout作为实现spout的核心interface, spout负责feeding message, 并且track这些message.
如果需要Spout track发出的message, 必须给出message-id, 这个message-id可以是任意类型, 但是如果不指定或将message-id置空, storm就不会track这个message

必须要注意的是, spout线程会在一个线程中调用ack, fail, nextTuple, 所以不用考虑互斥, 但是也要这些function中, 避免任意的block

/**
* ISpout is the core interface for implementing spouts. A Spout is responsible
* for feeding messages into the topology for processing. For every tuple emitted by
* a spout, Storm will track the (potentially very large) DAG of tuples generated
* based on a tuple emitted by the spout. When Storm detects that every tuple in
* that DAG has been successfully processed, it will send an ack message to the Spout.
*
* <p>If a tuple fails to be fully process within the configured timeout for the
* topology (see {@link backtype.storm.Config}), Storm will send a fail message to the spout
* for the message.</p>
*
* <p> When a Spout emits a tuple, it can tag the tuple with a message id. The message id
* can be any type. When Storm acks or fails a message, it will pass back to the
* spout the same message id to identify which tuple it's referring to. If the spout leaves out
* the message id, or sets it to null, then Storm will not track the message and the spout
* will not receive any ack or fail callbacks for the message.</p>
*
* <p>Storm executes ack, fail, and nextTuple all on the same thread. This means that an implementor
* of an ISpout does not need to worry about concurrency issues between those methods. However, it
* also means that an implementor must ensure that nextTuple is non-blocking: otherwise
* the method could block acks and fails that are pending to be processed.</p>
*/
public interface ISpout extends Serializable {
/**
* Called when a task for this component is initialized within a worker on the cluster.
* It provides the spout with the environment in which the spout executes.
*
* <p>This includes the:</p>
*
* @param conf The Storm configuration for this spout. This is the configuration provided to the topology merged in with cluster configuration on this machine.
* @param context This object can be used to get information about this task's place within the topology, including the task id and component id of this task, input and output information, etc.
* @param collector The collector is used to emit tuples from this spout. Tuples can be emitted at any time, including the open and close methods. The collector is thread-safe and should be saved as an instance variable of this spout object.
*/
void open(Map conf, TopologyContext context, SpoutOutputCollector collector); /**
* Called when an ISpout is going to be shutdown. There is no guarentee that close
* will be called, because the supervisor kill -9's worker processes on the cluster.
*
* <p>The one context where close is guaranteed to be called is a topology is
* killed when running Storm in local mode.</p>
*/
void close(); /**
* Called when a spout has been activated out of a deactivated mode.
* nextTuple will be called on this spout soon. A spout can become activated
* after having been deactivated when the topology is manipulated using the
* `storm` client.
*/
void activate(); /**
* Called when a spout has been deactivated. nextTuple will not be called while
* a spout is deactivated. The spout may or may not be reactivated in the future.
*/
void deactivate(); /**
* When this method is called, Storm is requesting that the Spout emit tuples to the
* output collector. This method should be non-blocking, so if the Spout has no tuples
* to emit, this method should return. nextTuple, ack, and fail are all called in a tight
* loop in a single thread in the spout task. When there are no tuples to emit, it is courteous
* to have nextTuple sleep for a short amount of time (like a single millisecond)
* so as not to waste too much CPU.
*/
void nextTuple(); /**
* Storm has determined that the tuple emitted by this spout with the msgId identifier
* has been fully processed. Typically, an implementation of this method will take that
* message off the queue and prevent it from being replayed.
*/
void ack(Object msgId); /**
* The tuple emitted by this spout with the msgId identifier has failed to be
* fully processed. Typically, an implementation of this method will put that
* message back on the queue to be replayed at a later time.
*/
void fail(Object msgId);

 

2. SpoutOutputCollector

用于expose spout发送(emit) tuples的接口

和bolt的output collector相比, spout的output collector可以指定message-id, 用于spout track该message

 

emit

List<Integer> emit(String streamId, List<Object> tuple, Object messageId)

emit, 3个参数, 发送到的streamid, tuple, 和message-id

        如果streamid为空, 则发送到默认stream, Utils.DEFAULT_STREAM_ID

        如果messageid为空, 则spout不会track this message

        1个返回值, 最终发送到的task ids

 

emitDirect

void emitDirect(int taskId, String streamId, List<Object> tuple, Object messageId)

directgrouping, 直接通过taskid指定发送的task

 

/**
* This output collector exposes the API for emitting tuples from an {@link backtype.storm.topology.IRichSpout}.
* The main difference between this output collector and {@link OutputCollector}
* for {@link backtype.storm.topology.IRichBolt} is that spouts can tag messages with ids so that they can be
* acked or failed later on. This is the Spout portion of Storm's API to
* guarantee that each message is fully processed at least once.
*/
public class SpoutOutputCollector implements ISpoutOutputCollector {
ISpoutOutputCollector _delegate; public SpoutOutputCollector(ISpoutOutputCollector delegate) {
_delegate = delegate;
} /**
* Emits a new tuple to the specified output stream with the given message ID.
* When Storm detects that this tuple has been fully processed, or has failed
* to be fully processed, the spout will receive an ack or fail callback respectively
* with the messageId as long as the messageId was not null. If the messageId was null,
* Storm will not track the tuple and no callback will be received. The emitted values must be
* immutable.
*
* @return the list of task ids that this tuple was sent to
*/
public List<Integer> emit(String streamId, List<Object> tuple, Object messageId) {
return _delegate.emit(streamId, tuple, messageId);
} /**
* Emits a new tuple to the default output stream with the given message ID.
* When Storm detects that this tuple has been fully processed, or has failed
* to be fully processed, the spout will receive an ack or fail callback respectively
* with the messageId as long as the messageId was not null. If the messageId was null,
* Storm will not track the tuple and no callback will be received. The emitted values must be
* immutable.
*
* @return the list of task ids that this tuple was sent to
*/
public List<Integer> emit(List<Object> tuple, Object messageId) {
return emit(Utils.DEFAULT_STREAM_ID, tuple, messageId);
} /**
* Emits a tuple to the default output stream with a null message id. Storm will
* not track this message so ack and fail will never be called for this tuple. The
* emitted values must be immutable.
*/
public List<Integer> emit(List<Object> tuple) {
return emit(tuple, null);
} /**
* Emits a tuple to the specified output stream with a null message id. Storm will
* not track this message so ack and fail will never be called for this tuple. The
* emitted values must be immutable.
*/
public List<Integer> emit(String streamId, List<Object> tuple) {
return emit(streamId, tuple, null);
} /**
* Emits a tuple to the specified task on the specified output stream. This output
* stream must have been declared as a direct stream, and the specified task must
* use a direct grouping on this stream to receive the message. The emitted values must be
* immutable.
*/
public void emitDirect(int taskId, String streamId, List<Object> tuple, Object messageId) {
_delegate.emitDirect(taskId, streamId, tuple, messageId);
} /**
* Emits a tuple to the specified task on the default output stream. This output
* stream must have been declared as a direct stream, and the specified task must
* use a direct grouping on this stream to receive the message. The emitted values must be
* immutable.
*/
public void emitDirect(int taskId, List<Object> tuple, Object messageId) {
emitDirect(taskId, Utils.DEFAULT_STREAM_ID, tuple, messageId);
} /**
* Emits a tuple to the specified task on the specified output stream. This output
* stream must have been declared as a direct stream, and the specified task must
* use a direct grouping on this stream to receive the message. The emitted values must be
* immutable.
*
* <p> Because no message id is specified, Storm will not track this message
* so ack and fail will never be called for this tuple.</p>
*/
public void emitDirect(int taskId, String streamId, List<Object> tuple) {
emitDirect(taskId, streamId, tuple, null);
} /**
* Emits a tuple to the specified task on the default output stream. This output
* stream must have been declared as a direct stream, and the specified task must
* use a direct grouping on this stream to receive the message. The emitted values must be
* immutable.
*
* <p> Because no message id is specified, Storm will not track this message
* so ack and fail will never be called for this tuple.</p>
*/
public void emitDirect(int taskId, List<Object> tuple) {
emitDirect(taskId, tuple, null);
} @Override
public void reportError(Throwable error) {
_delegate.reportError(error);
}
}

Storm-源码分析- spout (backtype.storm.spout)的更多相关文章

  1. Storm源码分析--Nimbus-data

    nimbus-datastorm-core/backtype/storm/nimbus.clj (defn nimbus-data [conf inimbus] (let [forced-schedu ...

  2. JStorm与Storm源码分析(四)--均衡调度器,EvenScheduler

    EvenScheduler同DefaultScheduler一样,同样实现了IScheduler接口, 由下面代码可以看出: (ns backtype.storm.scheduler.EvenSche ...

  3. JStorm与Storm源码分析(三)--Scheduler,调度器

    Scheduler作为Storm的调度器,负责为Topology分配可用资源. Storm提供了IScheduler接口,用户可以通过实现该接口来自定义Scheduler. 其定义如下: public ...

  4. JStorm与Storm源码分析(二)--任务分配,assignment

    mk-assignments主要功能就是产生Executor与节点+端口的对应关系,将Executor分配到某个节点的某个端口上,以及进行相应的调度处理.代码注释如下: ;;参数nimbus为nimb ...

  5. JStorm与Storm源码分析(一)--nimbus-data

    Nimbus里定义了一些共享数据结构,比如nimbus-data. nimbus-data结构里定义了很多公用的数据,请看下面代码: (defn nimbus-data [conf inimbus] ...

  6. storm源码分析之任务分配--task assignment

    在"storm源码分析之topology提交过程"一文最后,submitTopologyWithOpts函数调用了mk-assignments函数.该函数的主要功能就是进行topo ...

  7. storm源码分析之topology提交过程

    storm集群上运行的是一个个topology,一个topology是spouts和bolts组成的图.当我们开发完topology程序后将其打成jar包,然后在shell中执行storm jar x ...

  8. JStorm与Storm源码分析(五)--SpoutOutputCollector与代理模式

    本文主要是解析SpoutOutputCollector源码,顺便分析该类中所涉及的设计模式–代理模式. 首先介绍一下Spout输出收集器接口–ISpoutOutputCollector,该接口主要声明 ...

  9. Nimbus<三>Storm源码分析--Nimbus启动过程

    Nimbus server, 首先从启动命令开始, 同样是使用storm命令"storm nimbus”来启动看下源码, 此处和上面client不同, jvmtype="-serv ...

  10. Storm-源码分析-acker (backtype.storm.daemon.acker)

    backtype.storm.daemon.acker 设计的巧妙在于, 不用分别记录和track, stream过程中所有的tuple, 而只需要track root tuple, 而所有中间过程都 ...

随机推荐

  1. blender,沿某一轴缩放

    scale是等比缩放,要想沿某一轴缩放按一下s+z,或s+x,或s+y.

  2. [elk]logstash的最佳实战-项目实战

    重点参考: http://blog.csdn.net/qq1032355091/article/details/52953837 不得不说这是一个伟大的项目实战,是正式踏入logstash门槛的捷径 ...

  3. [na]台式机装原版Win2008R2

    坑了老半天,总结出几点 1,系统os下载: http://msdn.itellyou.cn/ 注:其他地方下载的,装后发现不是起不来就是驱动装不了. 2,u盘里放个压缩软件: 好呀压缩   和  浏览 ...

  4. ubuntu下记录所有用户的登录和操作日志

    一般我们可以用history命令来查看当前用户的操作记录,但是这个命令不能记录是所有用户登录操作的,也不能记录详细的操作时间,且不完整:所以误操作而造成重要的数据丢失,就很难查到是谁操作导致的. 在这 ...

  5. 【Objective-C】01-Objective-C概述

    前言 目前来说,Objective-C(简称OC)是iOS开发的核心语言,在开发过程中也会配合着使用C语言.C++,OC主要负责UI界面,C语言.C++可用于图形处理.近来,流传Ruby.C#也可以开 ...

  6. maven仓库国内镜像

    <mirror>        <id>alimaven</id>        <name>aliyun maven</name>     ...

  7. protobuf java学习

    本文档为java编程人员使用protocol buffer提供了一个基本的介绍,通过一个简单的例程进行介绍.通过本文,你可以了解到如下信息: 1.在一个.proto文件中定义一个信息格式. 2.使用p ...

  8. curl myip.ipip.net curl ip.cn curl cip.cc

    [命令行] curl查询公网出口IP 2016年07月22日 14:27:02 阅读数:19022 不管是在家里还是办公室,或者是公司的主机,很多时候都是在内网中,也就是说很多都是通过 NAT上网的, ...

  9. Easyui data方法扩展finder

    finder: function(jq, conditions){ if(!$(jq).data("OriginalData")){ $(jq).data("Origin ...

  10. Jmeter负载测试例子

    通过浏览器操作网站在jmeter录屏控制器显示录屏例子,并且通过这例子模拟多用户(线程)来负载测试. 工具/原料   Jmeter 浏览器 1.先在测试计划创建线程组和录制Case   1 1.1 选 ...