Deep Attentive Tracking via Reciprocative Learning

NIPS18_tracking

Type:Tracking-By-Detection

本篇论文地主要创新是在将注意机制引入到目标跟踪

摘要:源自认知神经科学地视觉注意促进人类对相关的内容的感知。近些年大量工作将注意机制引入到计算机视觉系统中。对于视觉跟踪来说,面临的最大问题在于目标外表的大尺度变化。自注图通过选择性关注临时的鲁棒特征提升视觉跟踪的性能。当前的一些检测跟踪算法主要使用额外的自注模型来生成特征权重,然而分类器并没有采用自注机制。在本文章=中,我们提出一种 reciprocative learning algorithm 算法在训练深度分类器时探索视觉自注机制。该算法由前馈与反馈操作两部分来产生自注图,该图作为正则项与分类LOSS一起训练。该深度分类器习得关注目标区域特征。相关的实验结果证实了该算法达到了极佳的跟踪效果。

引言

近年来。针对不同的视觉应用由此发展出各种各样的跟踪算法,其中视觉注意在视频中目标跟踪起了很大的作用。例如基于DCF的跟踪算法用一张高斯响应特征图表示输入的特征。很多人采用经验空间权重抑制由傅里叶变换过程中的边界效应。从视觉注意角度来说,空间权重也是自注图的一种表现形式。当目标由大尺度变化时,这种空间权重自注图就无法过多的注意边界的响应,从而错误的目标定位。

另一方面,two-stage tracking-by-detection 方法首先采集大量样本,对每一样本进行分类判断前景还是背景。视觉注意在这一方面有很大的潜能。现存的深度跟踪算法大多利用额外的注意模型来生成特征权重。自注机制需要经常以便可以学习到目标的最新特征,可以更好的将目标与背景区分。在本文中,作者直接训练一个自注分类器,整个训练过程包括前馈和反馈两步。在前馈这一步中,将图片输入网络,得到分类score;在反馈这一步中,将第一层网络的导数作为自注图(attention map),将自注图作为一个正则项作为LOSS函数中的一员进行训练。网络参数采用传统的反向传播进行更新。因此该深度分类器可以有效的学习目标相关区域的特征,同时有效地减少了背景的干扰。在测试的过程本网络的权重不进行更新,仅仅输出分类的score。

本文的主要贡献:

  1. 提出一个用于视觉自注的学习算法
  2. 将自注图作为loss函数的一项进行训练,使其关注目标的特征
  3. 通过与其他算法在相关数据集上的对比,我们的算法在性能上取得不错的结果

本文提出的跟踪算法训练过程

论文笔记:Deep Attentive Tracking via Reciprocative Learning的更多相关文章

  1. 论文阅读:Deep Attentive Tracking via Reciprocative Learning

    Deep Attentive Tracking via Reciprocative Learning 2018-11-14 13:30:36 Paper: https://arxiv.org/abs/ ...

  2. Deep attention tracking via Reciprocative Learning

    文章:Deep attention tracking via Reciprocative Learning 出自NIPS2018 文章链接:https://arxiv.org/pdf/1810.038 ...

  3. 论文笔记: Deep Learning based Recommender System: A Survey and New Perspectives

    (聊两句,突然记起来以前一个学长说的看论文要能够把论文的亮点挖掘出来,合理的进行概括23333) 传统的推荐系统方法获取的user-item关系并不能获取其中非线性以及非平凡的信息,获取非线性以及非平 ...

  4. 论文笔记——Deep Residual Learning for Image Recognition

    论文地址:Deep Residual Learning for Image Recognition ResNet--MSRA何凯明团队的Residual Networks,在2015年ImageNet ...

  5. 深度学习论文笔记-Deep Learning Face Representation from Predicting 10,000 Classes

    来自:CVPR 2014   作者:Yi Sun ,Xiaogang Wang,Xiaoao Tang 题目:Deep Learning Face Representation from Predic ...

  6. 论文笔记-Deep Affinity Network for Multiple Object Tracking

    作者: ShijieSun, Naveed Akhtar, HuanShengSong, Ajmal Mian, Mubarak Shah 来源: arXiv:1810.11780v1 项目:http ...

  7. 【论文笔记】多任务学习(Multi-Task Learning)

    1. 前言 多任务学习(Multi-task learning)是和单任务学习(single-task learning)相对的一种机器学习方法.在机器学习领域,标准的算法理论是一次学习一个任务,也就 ...

  8. 论文笔记 — MatchNet: Unifying Feature and Metric Learning for Patch-Based Matching

    论文:https://github.com/ei1994/my_reference_library/tree/master/papers 本文的贡献点如下: 1. 提出了一个新的利用深度网络架构基于p ...

  9. (论文笔记Arxiv2021)Walk in the Cloud: Learning Curves for Point Clouds Shape Analysis

    目录 摘要 1.引言 2.相关工作 3.方法 3.1局部特征聚合的再思考 3.2 曲线分组 3.3 曲线聚合和CurveNet 4.实验 4.1 应用细节 4.2 基准 4.3 消融研究 5.总结 W ...

随机推荐

  1. 10.vue router 带参数跳转

    vue router 带参数跳转 发送:this.$router.push({path:'/news',query:{id:row.id}}) 接收:var id=this.$route.query. ...

  2. redhat5本地源NBD驱动安装

    1.将镜像挂载到本机上 1)将系统ISO镜像放到自己电脑/root下     lsb_release -a 查看系统类型 2)在(/)目录下,建立yum目录     mkdir /root/yum 3 ...

  3. 动态树LCT(Link-cut-tree)总结+模板题+各种题目

    一.理解LCT的工作原理 先看一道例题: 让你维护一棵给定的树,需要支持下面两种操作: Change x val:  令x点的点权变为val Query x y:  计算x,y之间的唯一的最短路径的点 ...

  4. 笔记: 对称加密算法的PKCS5 和 PKCS7 填充

    PKCS #7 填充字符串由一个字节序列组成,每个字节填充该填充字节序列的长度. 假设,块的长度是 8, 数据长度是 5 数据:AA AA AA AA AA PKCS#7 填充 AA AA AA AA ...

  5. MySQL必知必会 读书笔记二:MySQL使用

    使用MySQL 选择数据库 使用USE关键字 USE database; 了解数据库和表 如果不知道可以使用的数据库名时,可用MySQL的SHOW命令来显示这些信息. SHOW DATABASES; ...

  6. 坑爹的jquery ui datepicker

    1.坑爹的jquery ui datepicker 竟然不支持选取时分秒,害的我Format半天 期间尝试了bootstrap的ditepicker,但是不起作用,发现被jquery ui 覆盖了, ...

  7. Xcode9.2 添加iOS11.2以下旧版本模拟器

    问题起源 由于手边项目需要适配到iOS7, 但是手边的测试机都被更新到最新版本,所以有些潜在的bug,更不发现不了.最近就是有个用户提出一个bug,而且是致命的,app直接闪退.app闪退,最常见的无 ...

  8. mqtt使用二(集成到java代码中)

    1.我采用的是springboot,首先pom文件中添加mqtt需要用到的依赖 <dependency> <groupId>org.springframework.boot&l ...

  9. flume搭建新手测试环境

    硬件环境: 腾讯云,两台服务器8G 双核 软件环境: flume1.8.jdk1.8,centos6 第一次搭建也是各种找文件,只知道flume是日志抓取服务,也听说了非常稳定强大的服务,正好公司需要 ...

  10. Java学习笔记十九:Java中的访问控制修饰符

    Java中的访问控制修饰符 一:Java修饰符的种类: 访问修饰符 非访问修饰符 修饰符用来定义类.方法或者变量,通常放在语句的最前端.我们通过下面的例子来说明: public class Hello ...