序. multiprocessing
python中的多线程其实并不是真正的多线程,如果想要充分地使用多核CPU的资源,在python中大部分情况需要使用多进程。Python提供了非常好用的多进程包multiprocessing,只需要定义一个函数,Python会完成其他所有事情。借助这个包,可以轻松完成从单进程到并发执行的转换。multiprocessing支持子进程、通信和共享数据、执行不同形式的同步,提供了Process、Queue、Pipe、Lock等组件。

1. Process

创建进程的类:Process([group [, target [, name [, args [, kwargs]]]]]),target表示调用对象,args表示调用对象的位置参数元组。kwargs表示调用对象的字典。name为别名。group实质上不使用。
方法:is_alive() 、join([timeout])、run()、start()、terminate()。其中,Process以start()启动某个进程。

is_alive():判断该进程是否还活着

join([timeout]):主进程阻塞,等待子进程的退出, join方法要在close或terminate之后使用。

run():进程p调用start()时,自动调用run()

属性:authkey、daemon(要通过start()设置)、exitcode(进程在运行时为None、如果为–N,表示被信号N结束)、name、pid。其中daemon是父进程终止后自动终止,且自己不能产生新进程,必须在start()之前设置。

例1.1:创建函数并将其作为单个进程

import multiprocessing
import time def worker(interval):
n = 5
while n > 0:
print("The time is {0}".format(time.ctime())) #输出时间的格式
time.sleep(interval)
n -= 1 if __name__ == "__main__":
p = multiprocessing.Process(target = worker, args = (3,))
p.start()
print "p.pid:", p.pid
print "p.name:", p.name
print "p.is_alive:", p.is_alive()

结果

1
2
3
4
5
6
7
8
p.pid: 8736
p.name: Process-1
p.is_alive: True
The time is Tue Apr 21 20:55:12 2015
The time is Tue Apr 21 20:55:15 2015
The time is Tue Apr 21 20:55:18 2015
The time is Tue Apr 21 20:55:21 2015
The time is Tue Apr 21 20:55:24 2015

例1.2:创建函数并将其作为多个进程

import multiprocessing
import time def worker_1(interval):
print "worker_1"
time.sleep(interval)
print "end worker_1" def worker_2(interval):
print "worker_2"
time.sleep(interval)
print "end worker_2" def worker_3(interval):
print "worker_3"
time.sleep(interval)
print "end worker_3" if __name__ == "__main__":
  p1 = Process(target=worker_1, args=(6,))
p2 = Process(target=worker_2, args=(4,))
p3 = Process(target=worker_3, args=(2,))
  p1.start() p2.start() p3.start()
  print("The number of CPU is:" + str(cpu_count()))
   for p in active_children():
   print("child p.name:=%s" % p.name + "\tp.id=%s" % str(p.pid))
  print(p1.pid)
  print("END-----")

结果

1
2
3
4
5
6
7
8
9
10
11

The number of CPU is:4
child p.name:=Process-2 p.id=3864
child p.name:=Process-3 p.id=3256
child p.name:=Process-1 p.id=7336
7336
END-----
worker_1
worker_2
worker_3
end worker_3
end worker_2
end worker_1

例1.3:将进程定义为类

import multiprocessing
import time class ClockProcess(multiprocessing.Process):
def __init__(self, interval):
multiprocessing.Process.__init__(self)
self.interval = interval def run(self):
n = 5
while n > 0:
print("the time is {0}".format(time.ctime()))
time.sleep(self.interval)
n -= 1 if __name__ == '__main__':
p = ClockProcess(3)
p.start()

:进程p调用start()时,自动调用run()

结果

1
2
3
4
5
the time is Tue Apr 21 20:31:30 2015
the time is Tue Apr 21 20:31:33 2015
the time is Tue Apr 21 20:31:36 2015
the time is Tue Apr 21 20:31:39 2015
the time is Tue Apr 21 20:31:42 2015

例1.4:daemon程序对比结果

#1.4-1 不加daemon属性

import multiprocessing
import time def worker(interval):
print("work start:{0}".format(time.ctime()));
time.sleep(interval)
print("work end:{0}".format(time.ctime())); if __name__ == "__main__":
p = multiprocessing.Process(target = worker, args = (3,))
p.start()
print "end!"

结果

1
2
3
end!
work start:Tue Apr 21 21:29:10 2015
work end:Tue Apr 21 21:29:13 2015

#1.4-2 加上daemon属性

import multiprocessing
import time def worker(interval):
print("work start:{0}".format(time.ctime()));
time.sleep(interval)
print("work end:{0}".format(time.ctime())); if __name__ == "__main__":
p = multiprocessing.Process(target = worker, args = (3,))
p.daemon = True
p.start()
print "end!"

结果

1
end!

:因子进程设置了daemon属性,主进程结束,它们就随着结束了。

  在多线程模型中,默认情况下(sub-Thread.daemon=False)主线程会等待子线程退出后再退出,而如果sub- Thread.setDaemon(True)时,主线程不会等待子线程,直接退出,而此时子线程会随着主线程的对出而退出,避免这种情况,主线程中需要 对子线程进行join,等待子线程执行完毕后再退出。对应的,在多进程模型中,Process类也有daemon属性,而它表示的含义与 Thread.daemon类似,当设置sub-Process.daemon=True时,主进程中需要对子进程进行等待,否则子进程会随着主进程的退 出而退出

更详细:http://www.tuicool.com/articles/zii6bm

#1.4-3 设置daemon执行完结束的方法

import multiprocessing
import time def worker(interval):
print("work start:{0}".format(time.ctime()));
time.sleep(interval)
print("work end:{0}".format(time.ctime())); if __name__ == "__main__":
p = multiprocessing.Process(target = worker, args = (3,))
p.daemon = True
p.start()
p.join()
print "end!"

结果

1
2
3
work start:Tue Apr 21 22:16:32 2015
work end:Tue Apr 21 22:16:35 2015
end!

2. Lock

当多个进程需要访问共享资源的时候,Lock可以用来避免访问的冲突。

import multiprocessing
import sys def worker_with(lock, f):
with lock:
fs = open(f, 'a+')
n = 10
while n > 1:
fs.write("Lockd acquired via with\n")
n -= 1
fs.close() def worker_no_with(lock, f):
lock.acquire()
try:
fs = open(f, 'a+')
n = 10
while n > 1:
fs.write("Lock acquired directly\n")
n -= 1
fs.close()
finally:
lock.release() if __name__ == "__main__":
lock = multiprocessing.Lock()
f = "file.txt"
w = multiprocessing.Process(target = worker_with, args=(lock, f))
nw = multiprocessing.Process(target = worker_no_with, args=(lock, f))
w.start()
nw.start()
print "end"

结果(输出文件)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
Lockd acquired via with
Lockd acquired via with
Lockd acquired via with
Lockd acquired via with
Lockd acquired via with
Lockd acquired via with
Lockd acquired via with
Lockd acquired via with
Lockd acquired via with
Lock acquired directly
Lock acquired directly
Lock acquired directly
Lock acquired directly
Lock acquired directly
Lock acquired directly
Lock acquired directly
Lock acquired directly
Lock acquired directly

3. Semaphore

Semaphore用来控制对共享资源的访问数量,例如池的最大连接数。

import multiprocessing
import time def worker(s, i):
s.acquire()
print(multiprocessing.current_process().name + "acquire");
time.sleep(i)
print(multiprocessing.current_process().name + "release\n");
s.release() if __name__ == "__main__":
s = multiprocessing.Semaphore(2)
for i in range(5):
p = multiprocessing.Process(target = worker, args=(s, i*2))
p.start()

结果

1
2
3
4
5
6
7
8
9
10
11
12
13
14
Process-1acquire
Process-1release
 
Process-2acquire
Process-3acquire
Process-2release
 
Process-5acquire
Process-3release
 
Process-4acquire
Process-5release
 
Process-4release

例子2:

import multiprocessing
import time def worker(s, ):
s.acquire()
print(multiprocessing.current_process().name + "acquire")
time.sleep(1)
# print(multiprocessing.current_process().name + "release\n")
s.release() if __name__ == "__main__":
s = multiprocessing.Semaphore(2)
for i in range(5):
p = multiprocessing.Process(target = worker, args=(s, ))
# time.sleep(0.01)
p.start()
#####结果######

Process-4acquire
Process-3acquire

Process-1acquire
Process-2acquire

Process-5acquire

 

4. Event

Event用来实现进程间同步通信。

import multiprocessing
import time def wait_for_event(e):
print("wait_for_event: starting")
e.wait() #一直阻塞的去等待set值
print('*****')
print("wairt_for_event: e.is_set()->" + str(e.is_set())) def wait_for_event_timeout(e, t):
print("wait_for_event_timeout:starting")
e.wait(2) #等2s去取set值
print('------')
print("wait_for_event_timeout:e.is_set->" + str(e.is_set())) if __name__ == "__main__":
e = multiprocessing.Event()
# e.set()
w1 = multiprocessing.Process(name="block", target=wait_for_event, args=(e,))
w2 = multiprocessing.Process(name="non-block", target=wait_for_event_timeout, args=(e, 2))
w1.start()
w2.start()
time.sleep(10)
e.set() # 设置set的值
print("main: event is set")

结果

1
2
3
4
5

wait_for_event: starting
wait_for_event_timeout:starting
------
wait_for_event_timeout:e.is_set->False
main: event is set
*****
wairt_for_event: e.is_set()->True

5. Queue

Queue是多进程安全的队列,可以使用Queue实现多进程之间的数据传递。put方法用以插入数据到队列中,put方法还有两个可选参数:blocked和timeout。如果blocked为True(默认值),并且timeout为正值,该方法会阻塞timeout指定的时间,直到该队列有剩余的空间。如果超时,会抛出Queue.Full异常。如果blocked为False,但该Queue已满,会立即抛出Queue.Full异常。
 
get方法可以从队列读取并且删除一个元素。同样,get方法有两个可选参数:blocked和timeout。如果blocked为True(默认值),并且timeout为正值,那么在等待时间内没有取到任何元素,会抛出Queue.Empty异常。如果blocked为False,有两种情况存在,如果Queue有一个值可用,则立即返回该值,否则,如果队列为空,则立即抛出Queue.Empty异常。Queue的一段示例代码:
import multiprocessing

def writer_proc(q):
try:
q.put(1, block = False)
except:
pass def reader_proc(q):
try:
print q.get(block = False)
except:
pass if __name__ == "__main__":
q = multiprocessing.Queue()
writer = multiprocessing.Process(target=writer_proc, args=(q,))
writer.start() reader = multiprocessing.Process(target=reader_proc, args=(q,))
reader.start() #reader.join() 这样会一直阻塞
#writer.join()

结果

1
1

6. Pipe

Pipe方法返回(conn1, conn2)代表一个管道的两个端。Pipe方法有duplex参数,如果duplex参数为True(默认值),那么这个管道是全双工模式,也就是说conn1和conn2均可收发。duplex为False,conn1只负责接受消息,conn2只负责发送消息。
 
send和recv方法分别是发送和接受消息的方法。例如,在全双工模式下,可以调用conn1.send发送消息,conn1.recv接收消息。如果没有消息可接收,recv方法会一直阻塞。如果管道已经被关闭,那么recv方法会抛出EOFError。
import multiprocessing
import time def proc1(pipe):
# while True:
for i in range(3):
print("send: %s" %(i))
pipe.send(i)
time.sleep(1) def proc2(pipe):
while True:
print ("proc2 rev:", pipe.recv())
time.sleep(1) def proc3(pipe):
while True:
print("PROC3 rev:", pipe.recv())
time.sleep(1) if __name__ == "__main__":
pipe = multiprocessing.Pipe()
p1 = multiprocessing.Process(target=proc1, args=(pipe[0],))
p2 = multiprocessing.Process(target=proc2, args=(pipe[1],))
#p3 = multiprocessing.Process(target=proc3, args=(pipe[1],)) p1.start()
p2.start()
# p3.start() # p1.join()
# p2.join()
# p3.join()
#######结果########

send: 0
proc2 rev: 0
send: 1
proc2 rev: 1
send: 2
proc2 rev: 2

结果

7. Pool

在利用Python进行系统管理的时候,特别是同时操作多个文件目录,或者远程控制多台主机,并行操作可以节约大量的时间。当被操作对象数目不大时,可以直接利用multiprocessing中的Process动态成生多个进程,十几个还好,但如果是上百个,上千个目标,手动的去限制进程数量却又太过繁琐,此时可以发挥进程池的功效。
Pool可以提供指定数量的进程,供用户调用,当有新的请求提交到pool中时,如果池还没有满,那么就会创建一个新的进程用来执行该请求;但如果池中的进程数已经达到规定最大值,那么该请求就会等待,直到池中有进程结束,才会创建新的进程来它。

例子:

import multiprocessing
import time def func(msg, a):
# if a == 1:
# time.sleep(8)
# print(1)
print("msg:", msg) print("++++")
time.sleep(3)
# print("end") if __name__ == "__main__":
pool = multiprocessing.Pool(processes=3)
for i in range(7):
msg = "hello %d" % (i)
a = i
# 维持执行的进程总数为processes,当一个进程执行完毕后会添加新的进程进去
pool.apply_async(func, (msg, a, ))
pool.close() # 调用join之前,先调用close函数,否则会出错。执行完close后不会有新的进程加入到pool,join函数等待所有子进程结束
pool.join()
print("Sub-process(es) done.")

例7.1:使用进程池(非阻塞)

#coding: utf-8
import multiprocessing
import time def func(msg):
print "msg:", msg
time.sleep(3)
print "end" if __name__ == "__main__":
pool = multiprocessing.Pool(processes = 3)
for i in xrange(4):
msg = "hello %d" %(i)
pool.apply_async(func, (msg, )) #维持执行的进程总数为processes,当一个进程执行完毕后会添加新的进程进去 print "Mark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~"
pool.close()
pool.join() #调用join之前,先调用close函数,否则会出错。执行完close后不会有新的进程加入到pool,join函数等待所有子进程结束
print "Sub-process(es) done."

一次执行结果

1
2
3
4
5
6
7
8
9
10
mMsg: hark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~ello 0
 
msg: hello 1
msg: hello 2
end
msg: hello 3
end
end
end
Sub-process(es) done.

函数解释:

  • apply_async(func[, args[, kwds[, callback]]]) 它是非阻塞,apply(func[, args[, kwds]])是阻塞的(理解区别,看例1例2结果区别)
  • close()    关闭pool,使其不在接受新的任务。
  • terminate()    结束工作进程,不在处理未完成的任务。
  • join()    主进程阻塞,等待子进程的退出, join方法要在close或terminate之后使用。

执行说明:创建一个进程池pool,并设定进程的数量为3,xrange(4)会相继产生四个对象[0, 1, 2, 4],四个对象被提交到pool中,因pool指定进程数为3,所以0、1、2会直接送到进程中执行,当其中一个执行完事后才空出一个进程处理对象3,所以会出现输出“msg: hello 3”出现在"end"后。因为为非阻塞,主函数会自己执行自个的,不搭理进程的执行,所以运行完for循环后直接输出“mMsg: hark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~”,主程序在pool.join()处等待各个进程的结束。

例7.2:使用进程池(阻塞)

#coding: utf-8
import multiprocessing
import time def func(msg):
print "msg:", msg
time.sleep(3)
print "end" if __name__ == "__main__":
pool = multiprocessing.Pool(processes = 3)
for i in xrange(4):
msg = "hello %d" %(i)
pool.apply(func, (msg, )) #维持执行的进程总数为processes,当一个进程执行完毕后会添加新的进程进去 print "Mark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~"
pool.close()
pool.join() #调用join之前,先调用close函数,否则会出错。执行完close后不会有新的进程加入到pool,join函数等待所有子进程结束
print "Sub-process(es) done."

一次执行的结果

1
2
3
4
5
6
7
8
9
10
msg: hello 0
end
msg: hello 1
end
msg: hello 2
end
msg: hello 3
end
Mark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~
Sub-process(es) done.

  

例7.3:使用进程池,并关注结果

import multiprocessing
import time def func(msg):
print "msg:", msg
time.sleep(3)
print "end"
return "done" + msg if __name__ == "__main__":
pool = multiprocessing.Pool(processes=4)
result = []
for i in xrange(3):
msg = "hello %d" %(i)
result.append(pool.apply_async(func, (msg, )))
pool.close()
pool.join()
for res in result:
print ":::", res.get()
print "Sub-process(es) done."

一次执行结果

1
2
3
4
5
6
7
8
9
10
msg: hello 0
msg: hello 1
msg: hello 2
end
end
end
::: donehello 0
::: donehello 1
::: donehello 2
Sub-process(es) done.

例7.4:使用多个进程池

import multiprocessing
import os, time, random def Lee(i):
print('', i)
time.sleep(3)
print('-----')
# print("\nRun task Lee-%s" %(os.getpid())) #os.getpid()获取当前的进程的ID
# start = time.time()
# time.sleep(random.random() * 10) #random.random()随机生成0-1之间的小数
# end = time.time()
# print('Task Lee, runs %0.2f seconds.' % (end - start)) def Marlon(i):
print('', i)
time.sleep(3)
print('-----')
# print("\nRun task Marlon-%s" % (os.getpid()))
# start = time.time()
# time.sleep(random.random() * 40)
# end = time.time()
# print('Task Marlon runs %0.2f seconds.' %(end - start)) def Allen(i):
print('', i)
time.sleep(3)
print('-----')
# print("\nRun task Allen-%s" %(os.getpid()))
# start = time.time()
# time.sleep(random.random() * 30)
# end = time.time()
# print('Task Allen runs %0.2f seconds.' %(end - start)) def Frank(i):
print('', i)
time.sleep(3)
print('-----')
# print("\nRun task Frank-%s" %(os.getpid()))
# start = time.time()
# time.sleep(random.random() * 20)
# end = time.time()
# print('Task Frank runs %0.2f seconds.' %(end - start)) if __name__ == '__main__': function_list = [Lee, Marlon, Allen, Frank] # print("parent process %s" % (os.getpid())) pool = multiprocessing.Pool(4)
for func in function_list:
# Pool执行函数,apply执行函数,当有一个进程执行完毕后,会添加一个新的进程到pool中
for i in ['a', 'b', 'c','d', 'e', 'f', 'g']:
pool.apply_async(func, args=(i,)) print('Waiting for all subprocesses done...')
pool.close()
# 调用join之前,一定要先调用close() 函数,否则会出错, close()执行后不会有新的进程加入到pool,join函数等待素有子进程结束 pool.join()
print('All subprocesses done.')
#coding: utf-8
import multiprocessing
import os, time, random def Lee():
print "\nRun task Lee-%s" %(os.getpid()) #os.getpid()获取当前的进程的ID
start = time.time()
time.sleep(random.random() * 10) #random.random()随机生成0-1之间的小数
end = time.time()
print 'Task Lee, runs %0.2f seconds.' %(end - start) def Marlon():
print "\nRun task Marlon-%s" %(os.getpid())
start = time.time()
time.sleep(random.random() * 40)
end=time.time()
print 'Task Marlon runs %0.2f seconds.' %(end - start) def Allen():
print "\nRun task Allen-%s" %(os.getpid())
start = time.time()
time.sleep(random.random() * 30)
end = time.time()
print 'Task Allen runs %0.2f seconds.' %(end - start) def Frank():
print "\nRun task Frank-%s" %(os.getpid())
start = time.time()
time.sleep(random.random() * 20)
end = time.time()
print 'Task Frank runs %0.2f seconds.' %(end - start) if __name__=='__main__':
function_list= [Lee, Marlon, Allen, Frank]
print "parent process %s" %(os.getpid()) pool=multiprocessing.Pool(4)
for func in function_list:
pool.apply_async(func) #Pool执行函数,apply执行函数,当有一个进程执行完毕后,会添加一个新的进程到pool中 print 'Waiting for all subprocesses done...'
pool.close()
pool.join() #调用join之前,一定要先调用close() 函数,否则会出错, close()执行后不会有新的进程加入到pool,join函数等待素有子进程结束
print 'All subprocesses done.'

一次执行结果

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
parent process 7704
 
Waiting for all subprocesses done...
Run task Lee-6948
 
Run task Marlon-2896
 
Run task Allen-7304
 
Run task Frank-3052
Task Lee, runs 1.59 seconds.
Task Marlon runs 8.48 seconds.
Task Frank runs 15.68 seconds.
Task Allen runs 18.08 seconds.
All subprocesses done.

python 之 多进程的更多相关文章

  1. 【python】多进程锁multiprocess.Lock

    [python]多进程锁multiprocess.Lock 2013-09-13 13:48 11613人阅读 评论(2) 收藏 举报  分类: Python(38)  同步的方法基本与多线程相同. ...

  2. Python实现多进程

    Python可以实现多线程,但是因为Global Interpreter Lock (GIL),Python的多线程只能使用一个CPU内核,即一个时间只有一个线程在运行,多线程只是不同线程之间的切换, ...

  3. 『Python』多进程处理

    尝试学习python的多进程模组,对比多线程,大概的区别在: 1.多进程的处理速度更快 2.多进程的各个子进程之间交换数据很不方便 多进程调用方式 进程基本使用multicore() 进程池优化进程的 ...

  4. python 使用多进程实现并发编程/使用queue进行进程间数据交换

    import time import os import multiprocessing from multiprocessing import Queue, pool ""&qu ...

  5. Python多线程多进程

    一.线程&进程 对于操作系统来说,一个任务就是一个进程(Process),比如打开一个浏览器就是启动一个浏览器进程,打开一个记事本就启动了一个记事本进程,打开两个记事本就启动了两个记事本进程, ...

  6. python中多进程+协程的使用以及为什么要用它

    前面讲了为什么python里推荐用多进程而不是多线程,但是多进程也有其自己的限制:相比线程更加笨重.切换耗时更长,并且在python的多进程下,进程数量不推荐超过CPU核心数(一个进程只有一个GIL, ...

  7. Python的多进程

    这里不说其它,Python的多进程网上已经有很多了,可以尽情搜索.但是用多进程一般是采用对任务的方式,所以注意文件锁定.一般采用Pool是比较合适的.给个网友的小代码 from multiproces ...

  8. 进程,线程,以及Python的多进程实例

    什么是进程,什么是线程? 进程与线程是包含关系,进程包含了线程. 进程是系统资源分配的最小单元,线程是系统任务执行的最小单元. 打个比方,打开word,word这个程序是一个进程,里面的拼写检查,字数 ...

  9. 进程与线程(2)- python实现多进程

    python 实现多进程 参考链接: https://morvanzhou.github.io/tutorials/python-basic/multiprocessing/ python中实现多进程 ...

  10. Python多线程多进程那些事儿看这篇就够了~~

    自己以前也写过多线程,发现都是零零碎碎,这篇写写详细点,填一下GIL和Python多线程多进程的坑~ 总结下GIL的坑和python多线程多进程分别应用场景(IO密集.计算密集)以及具体实现的代码模块 ...

随机推荐

  1. GTK入门学习:布局容器之固定布局

    前面我们学习的水平.垂直和表格布局容器,控件会跟着容器大小的变化进行自己主动适应.而固定布局容器里的控件则不会跟着变化( 则固定不变 ). 固定布局的创建: GtkWidget *gtk_fixed_ ...

  2. 【干货】电路设计师指导手册(已更新完毕)(转载EDN)

    [干货]电路设计师指导手册(已更新完毕) 第一部分:接地与布线第二部分:电源返回路径与I/O信号接地第三部分:板间互连.星形接地及屏蔽第四部分:安全地以及电线/电缆第五部分:射频电缆.双绞线与串扰

  3. iOS10相册相机闪退bug

    iOS10系统下调用系统相册.相机功能,遇到闪退的情况,描述如下: This app has crashed because it attempted to access privacy-sensit ...

  4. sql getdate()生成单据号

    select replace( replace( replace( replace(convert(varchar(23),getdate(),121),'-',''),':',''),' ','') ...

  5. Tcp/Ip--正常情况下的三次握手,四次挥手

    三次握手 四次挥手

  6. Vue 中的生命周期和钩子函数

    生命周期: beforeCreate:el 和 data 并未初始化 (此方法不常用) created:完成了 data 数据的初始化,el的初始化未完成.用来发送ajax beforeMount:( ...

  7. C语言 Linux环境变量

    /* *@author cody *@date 2014-08-12 *@description */ /* extern char **environ //environment values #i ...

  8. Spring Boot(二):@SpringBootApplication注解理解

    @SpringBootApplication包含三个有用的注解,包括 @SpringBootConfiguration:看源码其实就是@Configuration,表示当前类是一个配置类,就像xml配 ...

  9. Request介绍及演示样例 PART1

    Request在ServletAPI的规范连接地址http://blog.csdn.net/zghwaicsdn/article/details/51035146 HTTP简介 URL是浏览器寻找信息 ...

  10. atitit..国富论 在现代it企业项目管理中的作用attialx 总结---国富论读后感 attialx

    atitit..国富论 在现代it企业项目管理中的作用attialx 总结---国富论读后感 attialx 1. 国民财富的性质和原因的研究(简称:<国富论>) 1 2. 蕴含的重要管理 ...