题目描述

In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1..F) to another field, Bessie and the rest of the herd are forced to cross near the Tree of Rotten Apples. The cows are now tired of often being forced to take a particular path and want to build some new paths so that they will always have a choice of at least two separate routes between any pair of fields. They currently have at least one route between each pair of fields and want to have at least two. Of course, they can only travel on Official Paths when they move from one field to another.

Given a description of the current set of R (F-1 <= R <= 10,000) paths that each connect exactly two different fields, determine the minimum number of new paths (each of which connects exactly two fields) that must be built so that there are at least two separate routes between any pair of fields. Routes are considered separate if they use none of the same paths, even if they visit the same intermediate field along the way.

There might already be more than one paths between the same pair of fields, and you may also build a new path that connects the same fields as some other path.

为了从F(1≤F≤5000)个草场中的一个走到另一个,贝茜和她的同伴们有时不得不路过一些她们讨厌的可怕的树.奶牛们已经厌倦了被迫走某一条路,所以她们想建一些新路,使每一对草场之间都会至少有两条相互分离的路径,这样她们就有多一些选择.

每对草场之间已经有至少一条路径.给出所有R(F-1≤R≤10000)条双向路的描述,每条路连接了两个不同的草场,请计算最少的新建道路的数量, 路径由若干道路首尾相连而成.两条路径相互分离,是指两条路径没有一条重合的道路.但是,两条分离的路径上可以有一些相同的草场. 对于同一对草场之间,可能已经有两条不同的道路,你也可以在它们之间再建一条道路,作为另一条不同的道路.

输入输出格式

输入格式:

Line 1: Two space-separated integers: F and R

Lines 2..R+1: Each line contains two space-separated integers which are the fields at the endpoints of some path.

输出格式:

Line 1: A single integer that is the number of new paths that must be built.

输入输出样例

输入样例#1:

7 7
1 2
2 3
3 4
2 5
4 5
5 6
5 7
输出样例#1:

2

说明

Explanation of the sample:

One visualization of the paths is:

1 2 3

+---+---+

   |   |
| |

6 +---+---+ 4

/ 5 / / 7 +Building new paths from 1 to 6 and from 4 to 7 satisfies the conditions.

1 2 3

+---+---+

:  

6 +---+---+ 4

/ 5 : / :

/ :

7 + - - - - Check some of the routes:

1 – 2: 1 –> 2 and 1 –> 6 –> 5 –> 2

1 – 4: 1 –> 2 –> 3 –> 4 and 1 –> 6 –> 5 –> 4

3 – 7: 3 –> 4 –> 7 and 3 –> 2 –> 5 –> 7

Every pair of fields is, in fact, connected by two routes.

It's possible that adding some other path will also solve the problem (like one from 6 to 7). Adding two paths, however, is the minimum.

 
做法:
taijan缩点,在缩点后的新图上,如果新点的度为1,那么ans++
最后答案=(ans+1)*2
 
首先,任意两个点之间都有两条道路,那么任意一个点都要在一个环里
任意一个点都在一个环里,有两个思考方向:
1、没有桥(割边)
2、没有度为1的点
先看1,出现一个桥,补一条边,ans=桥的条数,这种方法是错误的
因为一个n条边的链,它有n-1个桥,但是只需要首尾相连就没有桥
所以我们选择2
这样每两个度为一的点,就连一条边,如果单出一个点就再加一条,所以ans=(ans+1)/2
 
为什么要在缩点之后的图上呢?直接统计度为一的点的个数不行吗?
看下面这个图就明白了
 

#include<cstdio>
#include<stack>
#include<algorithm>
#define N 5001
#define M 20011
using namespace std;
int n,m;
int tot=,front[N],to[M],nxt[M];
int dfn[N],low[N],id,bl[N],sum;
int p[M/][],d[N];
stack<int>s;
void add(int u,int v)
{
to[++tot]=v; nxt[tot]=front[u]; front[u]=tot;
to[++tot]=u; nxt[tot]=front[v]; front[v]=tot;
}
void tarjan(int u,int pre)
{
dfn[u]=low[u]=++id;
s.push(u);
for(int i=front[u];i;i=nxt[i])
{
if(i==(pre^)) continue;
if(!dfn[to[i]])
{
tarjan(to[i],i);
low[u]=min(low[u],low[to[i]]);
}
else low[u]=min(low[u],dfn[to[i]]);
}
if(low[u]==dfn[u])
{
sum++;
while(s.top()!=u)
{
bl[s.top()]=sum;
s.pop();
}
bl[s.top()]=sum;
s.pop();
}
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++)
{
scanf("%d%d",&p[i][],&p[i][]);
add(p[i][],p[i][]);
}
tarjan(,);
for(int i=;i<=m;i++)
if(bl[p[i][]]!=bl[p[i][]]) d[bl[p[i][]]]++,d[bl[p[i][]]]++;
int ans=;
for(int i=;i<=n;i++)
if(d[i]==) ans++;
printf("%d",ans+>>);
}

洛谷P2860 [USACO06JAN]冗余路径Redundant Paths的更多相关文章

  1. 洛谷 P2860 [USACO06JAN]冗余路径Redundant Paths 解题报告

    P2860 [USACO06JAN]冗余路径Redundant Paths 题目描述 为了从F(1≤F≤5000)个草场中的一个走到另一个,贝茜和她的同伴们有时不得不路过一些她们讨厌的可怕的树.奶牛们 ...

  2. 洛谷P2860 [USACO06JAN]冗余路径Redundant Paths(tarjan求边双联通分量)

    题目描述 In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1. ...

  3. 洛谷2860 [USACO06JAN]冗余路径Redundant Paths

    原题链接 题意实际上就是让你添加尽量少的边,使得每个点都在至少一个环上. 显然对于在一个边双连通分量里的点已经满足要求,所以可以用\(tarjan\)找边双并缩点. 对于缩点后的树,先讲下我自己的弱鸡 ...

  4. luogu P2860 [USACO06JAN]冗余路径Redundant Paths

    题目描述 In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1- ...

  5. 【luogu P2860 [USACO06JAN]冗余路径Redundant Paths】 题解

    题目链接:https://www.luogu.org/problemnew/show/P2860 考虑在无向图上缩点. 运用到边双.桥的知识. 缩点后统计度为1的点. 度为1是有一条路径,度为2是有两 ...

  6. luogu P2860 [USACO06JAN]冗余路径Redundant Paths |Tarjan

    题目描述 In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1. ...

  7. P2860 [USACO06JAN]冗余路径Redundant Paths tarjan

    题目链接 https://www.luogu.org/problemnew/show/P2860 思路 缩点,之后就成了个树一般的东西了 然后(叶子节点+1)/2就是答案,好像贪心的样子,lmc好像讲 ...

  8. P2860 [USACO06JAN]冗余路径Redundant Paths

    题解: 首先要边双缩点这很显然 然后变成树上问题 发现dp,dfs好像不太对 考虑一下度数 发现只要在度数为1的点之间连边 但我好像不太会证明这个东西.. 网上也没有看到比较正确的证明方法和连边策略. ...

  9. LUOGU P2860 [USACO06JAN]冗余路径Redundant Paths (双联通,缩点)

    传送门 解题思路 刚开始是找的桥,后来发现这样不对,因为一条链就可以被卡.后来想到应该缩点后找到度数为1 的点然后两两配对. #include<iostream> #include< ...

随机推荐

  1. 阿里云搭建bind服务,外网ip不能用来解析问题解决

    options { listen-on port 53 { any; }; //端口开放any listen-on-v6 port 53 { ::1; }; directory "/var/ ...

  2. windows编程入门最重要的

    要入门 Windows 编程,最重要的不是阅读什么教材,使用什么工具,而是先必须把以下几个对于初学者来说非常容易困惑的重要概念搞清楚: 1. 文字的编码和字符集.这部分需要掌握 ANSI 模式和 Un ...

  3. c# 删除word文档中某一页

    object objPage = 14; int pages = oDoc.ComputeStatistics(Microsoft.Office.Interop.Word.WdStatistic.wd ...

  4. java—连连看GUI

    1.连连看棋盘图形化 package Link; import java.awt.Color; import java.awt.Font; import java.awt.Graphics; impo ...

  5. 开启假期JAVA之路

    . 从最基础的JAVA开始学起,已经上了三节课啦!希望在课程结束后能完成一个令自己满意的连连看项目,期待ing~ 慢慢的从简单的代码上手了~ . 用循环输出等腰三角形的效果 import java.u ...

  6. ACM 第六天

    图论 网络流 最大流 INF(初始值) 路径上权值最小的边,决定流量大小. 流量网络的三个特性: ①流量控制 ②反对称性 ③流量守恒 残余网络:保留了c(e)容量<f(e)流量[可以继续流,因为 ...

  7. iOS开发应用程序生命周期

    各个程序运行状态时代理的回调: - (BOOL)application:(UIApplication *)application willFinishLaunchingWithOptions:(NSD ...

  8. 数论的欧拉定理证明 &amp; 欧拉函数公式(转载)

    欧拉函数 :欧拉函数是数论中很重要的一个函数,欧拉函数是指:对于一个正整数 n ,小于 n 且和 n 互质的正整数(包括 1)的个数,记作 φ(n) . 完全余数集合:定义小于 n 且和 n 互质的数 ...

  9. week1技术随笔

    2016-09-06 2016年9月3日 类别c 内容c 开始时间s 结束时间e 被打断时间I 总计(min) 读书 读构建之法  8:40  10:00  11  69 读书 构建之法-个人能力 , ...

  10. 生成以指定字符为开头的md5值(6位数字)

    以下脚本的功能是生成以指定字符为开头的md5值 #-*- coding:utf-8 -*- #脚本功能:生成以指定字符为开头的md5值(6位数字) import hashlib import rand ...