题目描述

In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1..F) to another field, Bessie and the rest of the herd are forced to cross near the Tree of Rotten Apples. The cows are now tired of often being forced to take a particular path and want to build some new paths so that they will always have a choice of at least two separate routes between any pair of fields. They currently have at least one route between each pair of fields and want to have at least two. Of course, they can only travel on Official Paths when they move from one field to another.

Given a description of the current set of R (F-1 <= R <= 10,000) paths that each connect exactly two different fields, determine the minimum number of new paths (each of which connects exactly two fields) that must be built so that there are at least two separate routes between any pair of fields. Routes are considered separate if they use none of the same paths, even if they visit the same intermediate field along the way.

There might already be more than one paths between the same pair of fields, and you may also build a new path that connects the same fields as some other path.

为了从F(1≤F≤5000)个草场中的一个走到另一个,贝茜和她的同伴们有时不得不路过一些她们讨厌的可怕的树.奶牛们已经厌倦了被迫走某一条路,所以她们想建一些新路,使每一对草场之间都会至少有两条相互分离的路径,这样她们就有多一些选择.

每对草场之间已经有至少一条路径.给出所有R(F-1≤R≤10000)条双向路的描述,每条路连接了两个不同的草场,请计算最少的新建道路的数量, 路径由若干道路首尾相连而成.两条路径相互分离,是指两条路径没有一条重合的道路.但是,两条分离的路径上可以有一些相同的草场. 对于同一对草场之间,可能已经有两条不同的道路,你也可以在它们之间再建一条道路,作为另一条不同的道路.

输入输出格式

输入格式:

Line 1: Two space-separated integers: F and R

Lines 2..R+1: Each line contains two space-separated integers which are the fields at the endpoints of some path.

输出格式:

Line 1: A single integer that is the number of new paths that must be built.

输入输出样例

输入样例#1:

7 7
1 2
2 3
3 4
2 5
4 5
5 6
5 7
输出样例#1:

2

说明

Explanation of the sample:

One visualization of the paths is:

1 2 3

+---+---+

   |   |
| |

6 +---+---+ 4

/ 5 / / 7 +Building new paths from 1 to 6 and from 4 to 7 satisfies the conditions.

1 2 3

+---+---+

:  

6 +---+---+ 4

/ 5 : / :

/ :

7 + - - - - Check some of the routes:

1 – 2: 1 –> 2 and 1 –> 6 –> 5 –> 2

1 – 4: 1 –> 2 –> 3 –> 4 and 1 –> 6 –> 5 –> 4

3 – 7: 3 –> 4 –> 7 and 3 –> 2 –> 5 –> 7

Every pair of fields is, in fact, connected by two routes.

It's possible that adding some other path will also solve the problem (like one from 6 to 7). Adding two paths, however, is the minimum.

 
做法:
taijan缩点,在缩点后的新图上,如果新点的度为1,那么ans++
最后答案=(ans+1)*2
 
首先,任意两个点之间都有两条道路,那么任意一个点都要在一个环里
任意一个点都在一个环里,有两个思考方向:
1、没有桥(割边)
2、没有度为1的点
先看1,出现一个桥,补一条边,ans=桥的条数,这种方法是错误的
因为一个n条边的链,它有n-1个桥,但是只需要首尾相连就没有桥
所以我们选择2
这样每两个度为一的点,就连一条边,如果单出一个点就再加一条,所以ans=(ans+1)/2
 
为什么要在缩点之后的图上呢?直接统计度为一的点的个数不行吗?
看下面这个图就明白了
 

#include<cstdio>
#include<stack>
#include<algorithm>
#define N 5001
#define M 20011
using namespace std;
int n,m;
int tot=,front[N],to[M],nxt[M];
int dfn[N],low[N],id,bl[N],sum;
int p[M/][],d[N];
stack<int>s;
void add(int u,int v)
{
to[++tot]=v; nxt[tot]=front[u]; front[u]=tot;
to[++tot]=u; nxt[tot]=front[v]; front[v]=tot;
}
void tarjan(int u,int pre)
{
dfn[u]=low[u]=++id;
s.push(u);
for(int i=front[u];i;i=nxt[i])
{
if(i==(pre^)) continue;
if(!dfn[to[i]])
{
tarjan(to[i],i);
low[u]=min(low[u],low[to[i]]);
}
else low[u]=min(low[u],dfn[to[i]]);
}
if(low[u]==dfn[u])
{
sum++;
while(s.top()!=u)
{
bl[s.top()]=sum;
s.pop();
}
bl[s.top()]=sum;
s.pop();
}
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++)
{
scanf("%d%d",&p[i][],&p[i][]);
add(p[i][],p[i][]);
}
tarjan(,);
for(int i=;i<=m;i++)
if(bl[p[i][]]!=bl[p[i][]]) d[bl[p[i][]]]++,d[bl[p[i][]]]++;
int ans=;
for(int i=;i<=n;i++)
if(d[i]==) ans++;
printf("%d",ans+>>);
}

洛谷P2860 [USACO06JAN]冗余路径Redundant Paths的更多相关文章

  1. 洛谷 P2860 [USACO06JAN]冗余路径Redundant Paths 解题报告

    P2860 [USACO06JAN]冗余路径Redundant Paths 题目描述 为了从F(1≤F≤5000)个草场中的一个走到另一个,贝茜和她的同伴们有时不得不路过一些她们讨厌的可怕的树.奶牛们 ...

  2. 洛谷P2860 [USACO06JAN]冗余路径Redundant Paths(tarjan求边双联通分量)

    题目描述 In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1. ...

  3. 洛谷2860 [USACO06JAN]冗余路径Redundant Paths

    原题链接 题意实际上就是让你添加尽量少的边,使得每个点都在至少一个环上. 显然对于在一个边双连通分量里的点已经满足要求,所以可以用\(tarjan\)找边双并缩点. 对于缩点后的树,先讲下我自己的弱鸡 ...

  4. luogu P2860 [USACO06JAN]冗余路径Redundant Paths

    题目描述 In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1- ...

  5. 【luogu P2860 [USACO06JAN]冗余路径Redundant Paths】 题解

    题目链接:https://www.luogu.org/problemnew/show/P2860 考虑在无向图上缩点. 运用到边双.桥的知识. 缩点后统计度为1的点. 度为1是有一条路径,度为2是有两 ...

  6. luogu P2860 [USACO06JAN]冗余路径Redundant Paths |Tarjan

    题目描述 In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1. ...

  7. P2860 [USACO06JAN]冗余路径Redundant Paths tarjan

    题目链接 https://www.luogu.org/problemnew/show/P2860 思路 缩点,之后就成了个树一般的东西了 然后(叶子节点+1)/2就是答案,好像贪心的样子,lmc好像讲 ...

  8. P2860 [USACO06JAN]冗余路径Redundant Paths

    题解: 首先要边双缩点这很显然 然后变成树上问题 发现dp,dfs好像不太对 考虑一下度数 发现只要在度数为1的点之间连边 但我好像不太会证明这个东西.. 网上也没有看到比较正确的证明方法和连边策略. ...

  9. LUOGU P2860 [USACO06JAN]冗余路径Redundant Paths (双联通,缩点)

    传送门 解题思路 刚开始是找的桥,后来发现这样不对,因为一条链就可以被卡.后来想到应该缩点后找到度数为1 的点然后两两配对. #include<iostream> #include< ...

随机推荐

  1. 【转】cpu的核心数与线程数的关系

    原文地址:http://www.dn580.com/dnzs/dncs/2013/10/08/172948914.html 我们在选购电脑的时候,CPU是一个需要考虑到核心因素,因为它决定了电脑的性能 ...

  2. canvas学习(二):渐变与曲线的绘制

    canvas学习(二):渐变与曲线的绘制 一:createLinearGradient()线性渐变: 二:createLinearGradient() 放射状/圆形渐变: 三:createPatter ...

  3. 福大软工1816:beta版本冲刺前准备

    BETA 版冲刺前准备 队名:第三视角 作业链接 组长博客 应作业要求为了更加顺利地开展beta版本的冲刺,上次的alpha版本展示后,我们组对之前开发过程中存在的各种问题进行了全面的讨论,并对其进行 ...

  4. 文件异步上传-ajaxFileUpload

    $.ajaxFileUpload是一个jquery插件 文章:jQuery插件之ajaxFileUpload

  5. HashMap get()返回值问题

    问题描述:在进行mysql查询必要字段后,需要根据id进行es其它数据字段的查询拼接.使用HashMap以id为key 以查询过来的数据值为value. 代码如下: Map<String,Int ...

  6. iOS开发Interface Builder技巧

    1.使view的Size与view中的Content相适应:选中任意的一个view,然后Editor->Size to Fit Content,或者简单的按 ⌘=接着就会按照下面的规则对选中vi ...

  7. winform Form窗体和UserControl用户空间嵌入Panel容器并填充

    private void sbtbflList_Click(object sender, EventArgs e) { ucxmflList ucfl = new ucxmflList();//用户控 ...

  8. JavaScript:理解事件、事件处理函数、钩子函数、回调函数

    详情请点击 http://www.jianshu.com/p/a0c580ed3432

  9. WDCP V3.2面板安装且新增PHP多版本和免费Let's Encrypt SSL证书

    文章原文:http://www.itbulu.com/wdcp-v32.html 我们很多网友对于WDCP面板应该算是比较熟悉的,老蒋在博客中也多次分享WDCP面板的相关教程内容,因为在平时帮助网友解 ...

  10. Ubuntu编译内核树

    什么是内核树?刚开始我也没弄明白,通过这几天的学习,有所感悟,就说说我的理解吧!从形式上看,内核树与内核源码的目录结构形式是相同的,都是由各个层次的文件目录结构组成,但是其中的具体内容肯定是不同的.从 ...