描述

Orz教主的成员为教主建了一个游乐场,在教主的规划下,游乐场有一排n个弹性无敌的跳跃装置,它们都朝着一个方向,对着一个巨大的湖,当人踩上去装置可以带你去这个方向无限远的地方,享受飞行的乐趣。但是等这批装置投入使用时,却发现来玩的人们更喜欢在这些装置上跳来跳去,并且由于这些装置弹性的优势,不但它们能让人向所对的方向能跳很远,也都能向相反方向跳一定的距离。 于是教主想出了个游戏,这n个装置按朝向相反的方向顺序以1..n编号。第i个装置可以跳到1..i-1个装置,且每个装置有一个不一定相同的反方向弹性a[i],代表第i个装置还可以跳到第i+1..i+a[i]个装置。教主指定一个起始的装置,问从这个装置开始,最少需要连续踩几次装置(起始的装置也算在内),可以跳到第n个装置的后方,即若第k个装置有k+a[i]>n,那么从第k个装置就可以跳到第n个装置的后方。

(PS:你可以认为有n+1个装置,即需要求多少次能条到第n+1个装置)

格式

输入格式

输入的第1行包含两个正整数n,m,为装置的数目以及询问的次数。

第2行包含n个正整数,第i个正整数为a[i],即第i个装置向反方向最大跳跃的长度。

第3行包含了m个正整数,为询问从哪一个装置开始,最少要几次跳到第n个的后方。

数字之间用空格隔开。 输出格式 输出包含1行,这一行有m个正整数,对于每一个询问,输出最少需要踩的装置数,数字之间用空格隔开。

行末换行且没有多余的空格。

样例1

样例输入

1

5 5

2 4 1 1 1

1 2 3 4 5

样例输出

1 2 1 2 2 1

限制

对于20%的数据,有n≤10;

对于40%的数据,有n≤100,m≤10;

对于60%的数据,有n≤1000,a[i]≤1000,m≤500;

对于100%的数据,有n≤100000,a[i]≤n,m≤40000。

时限1s

提示 若从第1个装置开始则跳到第2个装置,接着就可以跳到第n个装置的后方。 若从第3个装置开始则同样跳到第2个装置。 若从第4个装置开始可以跳到第2个装置或最后一个装置,接着跳出第n个装置,答案同样为2。

题意:中文题。

思路:不断从左到右,直到找到一个能跳到右边界r外的位置,定它为左边界l,dp[l] = dp[r] + 1,在 l 到 r 间的位置间进行判断,如果某个位置能够跳到右边界外,那么说明该位置可以通过跳到右边界再跳到下一个位置,即步数dp[i] = dp[r] + 1,而如果不能跳到右边界,那么通过左边界跳到右边界,即dp[i]=dp[l]+1,题目的单调性使这样的策略可行。

/** @Date    : 2016-11-18-13.59
* @Author : Lweleth (SoungEarlf@gmail.com)
* @Link : https://github.com/
* @Version :
*/
#include <stdio.h>
#include <iostream>
#include <string.h>
#include <algorithm>
#include <utility>
#include <vector>
#include <map>
#include <set>
#include <string>
#include <stack>
#include <math.h>
#include <queue>
//#include<bits/stdc++.h>
#define LL long long
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std; const int INF = 0x3f3f3f3f;
const int N = 1e6+2000;
using namespace std;
//high[i] means pi(n/i),low[i] means pi(i)
LL high[340000];
LL low[340000];
LL n;
LL fun()
{
LL i,m,p,s,x;
for(m = 1; m * m <= n; m++)
high[m] = n/m-1;
for(i = 1;i <= m; i++)
low[i] = i-1;
for(p = 2; p <= m; p++)
{
if(low[p] == low[p-1])
continue;
s = min(n/(p*p),m-1);
for(x = 1; x <= s; x++)
{
if(x*p <= m-1)
high[x] -= high[x*p] - low[p-1];
else
high[x] -= low[n/(x*p)] - low[p-1];
}
for(x = m; x >= p*p; x--)
low[x] -= low[x/p] - low[p-1];
}
} int main()
{
while(cin>>n)
{
fun();
cout << high[1] << endl;
}
}

vijos 1471 线性DP+贪心的更多相关文章

  1. $CH5105\ Cookies$ 线性$DP+$贪心

    CH 是很有趣的一道题 : ) Sol 第一反应就是f[i][j]表示前i个小朋友分j块饼干的最小怨气值 但是一个孩子所产生的怨气值并不固定,它与其他孩子获得饼干的情况有关 这里可以用到一个贪心,就是 ...

  2. HDU 1421 搬寝室 (线性dp 贪心预处理)

    搬寝室 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submis ...

  3. 动态规划_线性dp

    https://www.cnblogs.com/31415926535x/p/10415694.html 线性dp是很基础的一种动态规划,,经典题和他的变种有很多,比如两个串的LCS,LIS,最大子序 ...

  4. DP基础(线性DP)总结

    DP基础(线性DP)总结 前言:虽然确实有点基础......但凡事得脚踏实地地做,基础不牢,地动山摇,,,嗯! LIS(最长上升子序列) dp方程:dp[i]=max{dp[j]+1,a[j]< ...

  5. 非常完整的线性DP及记忆化搜索讲义

    基础概念 我们之前的课程当中接触了最基础的动态规划. 动态规划最重要的就是找到一个状态和状态转移方程. 除此之外,动态规划问题分析中还有一些重要性质,如:重叠子问题.最优子结构.无后效性等. 最优子结 ...

  6. 线性DP 学习笔记

    前言:线性DP是DP中最基础的.趁着这次复习认真学一下,打好基础. ------------------ 一·几点建议 1.明确状态的定义 比如:$f[i]$的意义是已经处理了前$i个元素,还是处理第 ...

  7. LightOJ1044 Palindrome Partitioning(区间DP+线性DP)

    问题问的是最少可以把一个字符串分成几段,使每段都是回文串. 一开始想直接区间DP,dp[i][j]表示子串[i,j]的答案,不过字符串长度1000,100W个状态,一个状态从多个状态转移来的,转移的时 ...

  8. Codeforces 176B (线性DP+字符串)

    题目链接: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=28214 题目大意:源串有如下变形:每次将串切为两半,位置颠倒形成 ...

  9. hdu1712 线性dp

    //Accepted 400 KB 109 ms //dp线性 //dp[i][j]=max(dp[i-1][k]+a[i][j-k]) //在前i门课上花j天得到的最大分数,等于max(在前i-1门 ...

随机推荐

  1. rsync+inotify实现实时同步,自动触发同步文件

    本文参考来自:http://chocolee.blog.51cto.com/8158455/1400596 我的需求和他的略有不同,同时做了一下更改,如下: 需求:两台机器相互为主备,搭建相同的两个服 ...

  2. wpa_supplicant下行接口浅析

    wpa_supplicant通过socket通信机制实现下行接口,与内核进行通信,获取信息或下发命令. 以下摘自http://blog.csdn.net/fxfzz/article/details/6 ...

  3. python正则表达式函数match()和search()的区别详解

    match()和search()都是python中的正则匹配函数,那这两个函数有何区别呢? match()函数只检测RE是不是在string的开始位置匹配, search()会扫描整个string查找 ...

  4. P4语法(1)基础数据类型和Header

    文章学习自:P4语言编程详解 由于原文有一点的年份,所以也继续阅读了相关的最新规范. P4语言规范 基础数据类型 布尔型(bool) 运算符 描述 and 双目运算符,结果为布尔型 or 双目运算符, ...

  5. Gym - 100851F Froggy Ford kruskal

    题目链接: http://acm.hust.edu.cn/vjudge/problem/307216 Froggy Ford Time Limit: 3000MS 题意 青蛙过河,河中有若干个石头,现 ...

  6. Java核心技术点之接口

    1. 为什么使用接口 Java中的接口是一组对需求的描述.接口通过声明接口方法来对外宣布:“要想具有XX功能,就得按我说的做(即实现接口方法).” 而接口的实现类通过实现相应接口的方法来宣布:“我已经 ...

  7. Xcode常见警告和错误

    Xcode 升级后,常常遇到的遇到的警告.错误,解决方法 从sdk3.2.5升级到sdk 7.1中间废弃了很多的方法,还有一些逻辑关系更加严谨了.1,警告:“xoxoxoxo”  is depreca ...

  8. HDU 2148 Score

    http://acm.hdu.edu.cn/showproblem.php?pid=2148 Problem Description 转眼又到了一年的年末,Lele又一次迎来了期末考试.虽然说每年都要 ...

  9. Vue脚手架开发使用sass

    vue默认采用的是原生的css,如果想要使用css预编译工具,比如sass,需要下载对应的scss的loader, 具体是 npm install --save-dev sass-loader npm ...

  10. 【其他】UTF-8带签名与不带签名

    在 Visual Web Developer 另存为文件时,有编码选项,其中有: Unicode (UTF-8 with signature) - Codepage 65001 Unicode (UT ...