Problem Description

This is a simple problem. The teacher gives Bob a list of problems about GCD (Greatest Common Divisor). After studying some of them, Bob thinks that GCD is so interesting. One day, he comes up with a new problem about GCD. Easy as it looks, Bob cannot figure it out himself. Now he turns to you for help, and here is the problem:

Given an array a of N positive integers a1,a2,⋯aN−1,aN; a subarray of a is defined as a continuous interval between a1 and aN. In other words, ai,ai+1,⋯,aj−1,aj is a subarray of a, for 1≤i≤j≤N. For a query in the form (L,R), tell the number of different GCDs contributed by all subarrays of the interval [L,R].

Input

There are several tests, process till the end of input.

For each test, the first line consists of two integers N and Q, denoting the length of the array and the number of queries, respectively. N positive integers are listed in the second line, followed by Q lines each containing two integers L,R for a query.

You can assume that

1≤N,Q≤100000

1≤ai≤1000000

Output

For each query, output the answer in one line.

Sample Input

5 3

1 3 4 6 9

3 5

2 5

1 5

Sample Output

6

6

6

**题意:**给你n个数Q个查询,每次查询询问[l,r]内不同gcd的个数
**思路:**Q很大,按照一般思路使用线段树在线操作似乎不可行,所以考虑使用离线操作。但重点在于如何预处理出GCD。
在这里我们固定右端点,枚举上一个端点所存的所有不同GCD值,求GCD,并记录不同的,延伸右端点时,再重复操作即可。
在树状数组更新时,当出现一个重复的GCD值,始终把标记维护到最靠右的,并把之前出现的相同GCD的位置所在的标记消掉。这样就能使数量数组拥有前缀特性,可以使用sum[r]-sum[l]了
容器套容器很好用阿,弱要加快学了。

/** @Date    : 2016-11-13-16.10

* @Author : Lweleth (SoungEarlf@gmail.com)

* @Link : https://github.com/

* @Version :

*/

#include <stdio.h>

#include <iostream>

#include <string.h>

#include <algorithm>

#include <utility>

#include <vector>

#include <map>

#include <set>

#include <string>

#include <stack>

#include <queue>

#define pii pair<int , int>

#define FF first

#define SS second

#define MP(x,y) make_pair((x), (y))

#define LL long long

#define MMF(x) memset((x),0,sizeof(x))

#define MMI(x) memset((x), INF, sizeof(x))

using namespace std;



const int INF = 0x3f3f3f3f;

const int N = 1e5+2000;



int n,q;

int c[N];

int a[N];

int ans[N];

vector< pair<int,int> >gp[N];

int vis[1000010];



struct yuu

{

int l, r;

int m;

}Q[N];



int cmp(yuu a, yuu b)

{

return a.r < b.r;

}

int gcd(int a, int b)

{

return b?gcd(b, a % b):a;

}



void add(int x, int y)

{

while(x < N)

{

c[x] += y;

x += x & (-x);

}

}



int sum(int x)

{

int ans = 0;

while(x)

{

ans += c[x];

x -= x & (-x);

}

return ans;

}



void init()

{



MMF(c);

MMF(vis);

MMF(ans);

for(int i = 1; i <= n; i++)

{

int x = a[i];

int p = i;

for(int j = 0; j < gp[i-1].size(); j++)

{

int g = gcd(gp[i-1][j].FF, x);

if(x != g)

{

gp[i].push_back(MP(x, p));

x = g;

p = gp[i-1][j].SS;

}

}

gp[i].push_back(MP(x, p));

}

}

int main()

{

while(~scanf("%d%d", &n, &q))

{



MMF(a);

for(int i = 1; i <= n; i++ )

{

scanf("%d", a + i);

gp[i].clear();

}

init();

for(int i = 0; i < q; i++)

{

scanf("%d%d", &Q[i].l, &Q[i].r);

Q[i].m = i;

}



sort(Q, Q + q, cmp);

//////

int pos = 0;

for(int i = 1; i <= n; i++)

{

for(int j = 0; j < gp[i].size(); j++)//

{

if(vis[gp[i][j].FF])

add(vis[gp[i][j].FF], -1);

vis[gp[i][j].FF] = gp[i][j].SS;

add(gp[i][j].SS, 1);

}

while(Q[pos].r == i)

{

ans[Q[pos].m] = sum(Q[pos].r) - sum(Q[pos].l-1);

pos++;

}

}

for(int i = 0; i < q; i++)

printf("%d\n", ans[i]);



}

return 0;

}

HDU 5869 Different GCD Subarray Query 树状数组+离线的更多相关文章

  1. HDU 5869 Different GCD Subarray Query 树状数组 + 一些数学背景

    http://acm.hdu.edu.cn/showproblem.php?pid=5869 题意:给定一个数组,然后给出若干个询问,询问[L, R]中,有多少个子数组的gcd是不同的. 就是[L, ...

  2. HDU 5869 Different GCD Subarray Query rmq+离线+数状数组

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5869 Different GCD Subarray Query Time Limit: 6000/3 ...

  3. HDU 5869 Different GCD Subarray Query (GCD种类预处理+树状数组维护)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5869 问你l~r之间的连续序列的gcd种类. 首先固定右端点,预处理gcd不同尽量靠右的位置(此时gc ...

  4. HDU 5869 Different GCD Subarray Query 离线+树状数组

    Different GCD Subarray Query Problem Description   This is a simple problem. The teacher gives Bob a ...

  5. HDU 5869 Different GCD Subarray Query(2016大连网络赛 B 树状数组+技巧)

    还是想不到,真的觉得难,思路太巧妙 题意:给你一串数和一些区间,对于每个区间求出区间内每段连续值的不同gcd个数(该区间任一点可做起点,此点及之后的点都可做终点) 首先我们可以知道每次添加一个值时gc ...

  6. HDU 5869 Different GCD Subarray Query

    离线操作,树状数组,$RMQ$. 这个题的本质和$HDU$ $3333$是一样的,$HDU$ $3333$要求计算区间内不同的数字有几个. 这题稍微变了一下,相当于原来扫描到$i$的之后是更新$a[i ...

  7. hdu 5869 Different GCD Subarray Query BIT+GCD 2016ICPC 大连网络赛

    Different GCD Subarray Query Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K ( ...

  8. HDU 4630 No Pain No Game 树状数组+离线查询

    思路参考 这里. #include <cstdio> #include <cstring> #include <cstdlib> #include <algo ...

  9. 【刷题】HDU 5869 Different GCD Subarray Query

    Problem Description This is a simple problem. The teacher gives Bob a list of problems about GCD (Gr ...

随机推荐

  1. 关于css的总结

    写在前面  ,学好css,需要长期的推敲和积累  ,细节是不断完善的,逐渐形成自己的风格    让自己的css更加接近优雅. 下面来总结一些我觉得比较好的css代码风格 : 1. 一般网页中的背景 用 ...

  2. 2017-2018-2 20172314 『Java程序设计』课程 结对编程练习_四则运算

    相关过程截图 截图为我负责的部分关于计算的测试 关键代码解释 根据代码中的部分解释,这部分代码实现了结果的整数和分数的输出,如果算出的结果为一个真分数,就输出真分数的形式,如果结果为整数,就输出整数形 ...

  3. FZU.Software Engineering1816 · First Homework -Preparation

    Introduction 041602204 : 我是喜欢狗狗(particularly Corgi & Shiba Inu.)的丁水源 : 我的爱好是音乐.电影.英语(100%!!!!).吉 ...

  4. 深入了解View的绘制流程

    1.  ViewRoot ViewRoot是连接WindowManager与DecorView的纽带,View的整个绘制流程的三大步(measure.layout.draw)都是通过ViewRoot完 ...

  5. C# 创建Excel或需不安装Office

    第一种.Aspose.Cells.dll //如果需要饶过office Excel那么就看我最后的实现方法吧~! //我最后的实现是使用的第三方Aspose.Cells.dll //具了解这个dll一 ...

  6. [OS] 操作系统常考知识点

    转自:http://jennica.space/2017/03/21/os-principle/ 大纲如下: 1.操作系统概述2.操作系统运行环境3.进程线程模型4.处理器调度5.同步机制6.存储模型 ...

  7. [剑指Offer] 47.求1+2+3+...+n

    题目描述 求1+2+3+...+n,要求不能使用乘除法.for.while.if.else.switch.case等关键字及条件判断语句(A?B:C). [思路]用&&的短路思想来求和 ...

  8. query 获取本身的HTML

    <div class="test"><p>hello,你好!</p></div> <script> $(".t ...

  9. snmpwalk的报文检测

    1.先用nc起一个监听的端口,然后看报文是不是正确的: 注:nc是一个模拟各种网络协议的东西,模拟服务器.客户端等: 2.触发告警,让他发报文: 3.用nc模拟一个服务端,启动一个udp的端口163: ...

  10. wmware的vmnet0、vmnet1、vmnet8

    用vmware安装虚拟机后会出现三种网卡: 1.vmnet0:桥接网卡,虚拟机相当于一台实体机,可以自用访问与被访问及上网. 在桥接模式下,VMware虚拟出来的操作系统就像是局域网中的一独立的主机, ...