python 实现简单的KNN算法
from numpy import *
import operator def createDataSet():
group = array([[3,104],[2,100],[1,81],[101,10],[99,5],[98,2]])
labels = ['爱情片','爱情片','爱情片','动作片','动作片','动作片']
return group, labels def classify0(inX, dataSet, labels, k):
dataSetSize = dataSet.shape[0]
diffMat = tile(inX, (dataSetSize,1)) - dataSet
sqDiffMat = diffMat ** 2
sqDistances = sqDiffMat.sum(axis=1)
distances = sqDistances ** 0.5
sortedDistIndicies = distances.argsort()
classCount = {}
for i in range(k):
voteIlabel = labels[sortedDistIndicies[i]]
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)
return sortedClassCount[0][0] group,labels = createDataSet()
print(classify0([500,90],group,labels,3))
使用错误率来检验算法
from numpy import * import matplotlib
import matplotlib.pyplot as plt
import operator def file2matrix(filename):
fr = open(filename)
arrayOLines = fr.readlines()
numberOfLines = len(arrayOLines)
returnMat = zeros((numberOfLines,3))
classLabelVector = []
index = 0
for line in arrayOLines:
line = line.strip()
listFromLine = line.split('\t')
returnMat[index,:] = listFromLine[0:3]
classLabelVector.append(int(listFromLine[-1]))
index += 1
return returnMat,classLabelVector def autoNorm(dataSet):
minVals = dataSet.min(0)
maxVals = dataSet.max(0)
ranges = maxVals - minVals
normDataSet = zeros(shape(dataSet))
# print(shape(dataSet))
# print(normDataSet)
m = dataSet.shape[0]
normDataSet = dataSet - tile(minVals,(m,1))
normDataSet = normDataSet / tile(ranges,(m,1))
return normDataSet, ranges, minVals def classify0(inX, dataSet, labels, k):
dataSetSize = dataSet.shape[0]
diffMat = tile(inX, (dataSetSize,1)) - dataSet
sqDiffMat = diffMat ** 2
sqDistances = sqDiffMat.sum(axis=1)
distances = sqDistances ** 0.5
sortedDistIndicies = distances.argsort()
classCount = {}
for i in range(k):
voteIlabel = labels[sortedDistIndicies[i]]
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)
return sortedClassCount[0][0] def datingClassTest():
hoRatio = 0.10
datingDataMat,datingLabels = file2matrix('datingTestSet2.txt')
normMat,ranges,minVals = autoNorm(datingDataMat)
m = normMat.shape[0]
# print(m)
numTestVecs = int(m*hoRatio)
errorCount = 0.0
for i in range(numTestVecs):
classifierResult = classify0(normMat[i,:],normMat[numTestVecs:m,:],datingLabels[numTestVecs:m],3)
print("the classifier came back with: %d,the real answer is: %d" % (classifierResult, datingLabels[i]))
if (classifierResult != datingLabels[i]):
errorCount += 1.0
print("the total error rate is: %f" % (errorCount/float(numTestVecs)))
datingClassTest()
数据集下载:https://i.cnblogs.com/Files.aspx
datingTestSet2.rar
python 实现简单的KNN算法的更多相关文章
- python实现简单分类knn算法
原理:计算当前点(无label,一般为测试集)和其他每个点(有label,一般为训练集)的距离并升序排序,选取k个最小距离的点,根据这k个点对应的类别进行投票,票数最多的类别的即为该点所对应的类别.代 ...
- 机器学习经典算法具体解释及Python实现--K近邻(KNN)算法
(一)KNN依旧是一种监督学习算法 KNN(K Nearest Neighbors,K近邻 )算法是机器学习全部算法中理论最简单.最好理解的.KNN是一种基于实例的学习,通过计算新数据与训练数据特征值 ...
- Python简单实现KNN算法
__author__ = '糖衣豆豆' from numpy import * from os import listdir import operator #从列方向扩展 #tile(a,(size ...
- [Python]基于K-Nearest Neighbors[K-NN]算法的鸢尾花分类问题解决方案
看了原理,总觉得需要用具体问题实现一下机器学习算法的模型,才算学习深刻.而写此博文的目的是,网上关于K-NN解决此问题的博文很多,但大都是调用Python高级库实现,尤其不利于初级学习者本人对模型的理 ...
- python机器学习一:KNN算法实现
所谓的KNN算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一.所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个 ...
- 吴裕雄--天生自然python机器学习实战:K-NN算法约会网站好友喜好预测以及手写数字预测分类实验
实验设备与软件环境 硬件环境:内存ddr3 4G及以上的x86架构主机一部 系统环境:windows 软件环境:Anaconda2(64位),python3.5,jupyter 内核版本:window ...
- Python 实现简单的感知机算法
感知机 随机生成一些点和一条原始直线,然后用感知机算法来生成一条直线进行分类,比较差别 导入包并设定画图尺寸 import numpy as np import matplotlib.pyplot a ...
- python实现简单关联规则Apriori算法
from itertools import combinations from copy import deepcopy # 导入数据,并剔除支持度计数小于min_support的1项集 def lo ...
- 算法代码[置顶] 机器学习实战之KNN算法详解
改章节笔者在深圳喝咖啡的时候突然想到的...之前就有想写几篇关于算法代码的文章,所以回家到以后就奋笔疾书的写出来发表了 前一段时间介绍了Kmeans聚类,而KNN这个算法刚好是聚类以后经常使用的匹配技 ...
随机推荐
- Python自动化运维 - Django(二)Ajax基础 - 自定义分页
Ajax基础 AJAX 不是新的编程语言,而是一种使用现有标准的新方法. AJAX 是与服务器交换数据并更新部分网页的艺术,在不重新加载整个页面的情况下. 什么是Ajax AJAX = 异步 Java ...
- python实战===itchat
import itchat itchat.login() friends=itchat.get_friends(update=True)[0:] male=female=other=0 for i i ...
- linux命令(7):ipcs/ipcrm命令
ipcs作用 :查看消息队列(ipcs –q).共享内存(ipcs –m).信号灯(ipcs -s) ipcrm作用 :删除消息队列.共享内存.信号灯 ipcrm使用方式: ipcrm [ -M ke ...
- poj 2251(同余)
Ones Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 11461 Accepted: 6488 Description ...
- (ubuntu) pip install scandir 时出现错误 fatal error: Python.h: No such file or directory
安装 jupyter时遇到这个问题,在这里查到了解决方法,特记录一下. 解决方式为: 先安装 python-dev: $ sudo apt-get install python-dev 然后再安装需要 ...
- Windows7 + OSG3.6 + VS2017 + Qt5.11
一.准备工作 下载需要的材料: 1. OSG稳定版源代码, 3.6.3版本 2. 第三方库,选择VS2017对应的版本 https://download.osgvisual.org/3rdParty ...
- 原生DOM选择器querySelector和querySelectorAll
在传统的 JavaScript 开发中,查找 DOM 往往是开发人员遇到的第一个头疼的问题,原生的 JavaScript 所提供的 DOM 选择方法并不多,仅仅局限于通过 tag, name, id ...
- MITx 创业101 寻找你的顾客
来自MITx的创业课 步骤一 市场分割(Market Segmentation) 头脑风暴所有可能的市场,关注可能性 寻找最终用户(End User)——会使用你的产品的用户,但不一定会付钱 思考产品 ...
- string char * const char *之间的互相转换
string -> const char * 用str的c_str()方法或者data()方法均可,这个两个方法返回值为cong char * string str = "hel ...
- 一款简洁而强大的前端框架—JQuery
jQuery是什么? jQuery是一个快速.简洁的JavaScript框架,它封装JavaScript常用的功能代码,提供一种简便的JavaScript设计模式,优化HTML文档操作.事件处理.动画 ...