(原创)Stanford Machine Learning (by Andrew NG) --- (week 1) Linear Regression
Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml
在Linear Regression部分出现了一些新的名词,这些名词在后续课程中会频繁出现:
Cost Function | Linear Regression | Gradient Descent | Normal Equation | Feature Scaling | Mean normalization |
损失函数 | 线性回归 | 梯度下降 | 正规方程 | 特征归一化 | 均值标准化 |
Model Representation
- m: number of training examples
- x(i): input (features) of ith training example
- xj(i): value of feature j in ith training example
- y(i): “output” variable / “target” variable of ith training example
- n: number of features
- θ: parameters
- Hypothesis: hθ(x) = θ0 + θ1x1 + θ2x2 + … +θnxn
Cost Function
IDEA: Choose θso that hθ(x) is close to y for our training examples (x, y).
A.Linear Regression with One Variable Cost Function
Cost Function:
Goal:
Contour Plot:
B.Linear Regression with Multiple Variable Cost Function
Cost Function:
Goal:
Gradient Descent
Outline
Gradient Descent Algorithm
迭代过程收敛图可能如下:
(此为等高线图,中间为最小值点,图中蓝色弧线为可能的收敛路径。)
Learning Rate α:
1) If α is too small, gradient descent can be slow to converge;
2) If α is too large, gradient descent may not decrease on every iteration or may not converge;
3) For sufficiently small α , J(θ) should decrease on every iteration;
Choose Learning Rate α: Debug, 0.001, 0.003, 0.006, 0.01, 0.03, 0.06, 0.1, 0.3, 0.6, 1.0;
“Batch” Gradient Descent: Each step of gradient descent uses all the training examples;
“Stochastic” gradient descent: Each step of gradient descent uses only one training examples.
Normal Equation
IDEA: Method to solve for θ analytically.
for every j, then
Restriction: Normal Equation does not work when (XTX) is non-invertible.
PS: 当矩阵为满秩矩阵时,该矩阵可逆。列向量(feature)线性无关且行向量(样本)线性无关的个数大于列向量的个数(特征个数n).
Gradient Descent Algorithm VS. Normal Equation
Gradient Descent:
- Need to choose α;
- Needs many iterations;
- Works well even when n is large; (n > 1000 is appropriate)
Normal Equation:
- No need to choose α;
- Don’t need to iterate;
- Need to compute (XTX)-1 ;
- Slow if n is very large. (n < 1000 is OK)
Feature Scaling
IDEA: Make sure features are on a similar scale.
好处: 减少迭代次数,有利于快速收敛
Example: If we need to get every feature into approximately a -1 ≤ xi ≤ 1 range, feature values located in [-3, 3] or [-1/3, 1/3] fields are acceptable.
Mean normalization:
HOMEWORK
好了,既然看完了视频课程,就来做一下作业吧,下面是Linear Regression部分作业的核心代码:
1.computeCost.m/computeCostMulti.m
J=/(*m)*sum((theta'*X'-y').^2);
2.gradientDescent.m/gradientDescentMulti.m
h=X*theta-y;
v=X'*h;
v=v*alpha/m;
theta1=theta;
theta=theta-v;
(原创)Stanford Machine Learning (by Andrew NG) --- (week 1) Linear Regression的更多相关文章
- (原创)Stanford Machine Learning (by Andrew NG) --- (week 3) Logistic Regression & Regularization
coursera上面Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 我曾经使用Logistic Regressio ...
- (原创)Stanford Machine Learning (by Andrew NG) --- (week 10) Large Scale Machine Learning & Application Example
本栏目来源于Andrew NG老师讲解的Machine Learning课程,主要介绍大规模机器学习以及其应用.包括随机梯度下降法.维批量梯度下降法.梯度下降法的收敛.在线学习.map reduce以 ...
- (原创)Stanford Machine Learning (by Andrew NG) --- (week 8) Clustering & Dimensionality Reduction
本周主要介绍了聚类算法和特征降维方法,聚类算法包括K-means的相关概念.优化目标.聚类中心等内容:特征降维包括降维的缘由.算法描述.压缩重建等内容.coursera上面Andrew NG的Mach ...
- (原创)Stanford Machine Learning (by Andrew NG) --- (week 7) Support Vector Machines
本栏目内容来源于Andrew NG老师讲解的SVM部分,包括SVM的优化目标.最大判定边界.核函数.SVM使用方法.多分类问题等,Machine learning课程地址为:https://www.c ...
- (原创)Stanford Machine Learning (by Andrew NG) --- (week 9) Anomaly Detection&Recommender Systems
这部分内容来源于Andrew NG老师讲解的 machine learning课程,包括异常检测算法以及推荐系统设计.异常检测是一个非监督学习算法,用于发现系统中的异常数据.推荐系统在生活中也是随处可 ...
- (原创)Stanford Machine Learning (by Andrew NG) --- (week 4) Neural Networks Representation
Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 神经网络一直被认为是比较难懂的问题,NG将神经网络部分的课程分为了 ...
- (原创)Stanford Machine Learning (by Andrew NG) --- (week 1) Introduction
最近学习了coursera上面Andrew NG的Machine learning课程,课程地址为:https://www.coursera.org/course/ml 在Introduction部分 ...
- (原创)Stanford Machine Learning (by Andrew NG) --- (week 5) Neural Networks Learning
本栏目内容来自Andrew NG老师的公开课:https://class.coursera.org/ml/class/index 一般而言, 人工神经网络与经典计算方法相比并非优越, 只有当常规方法解 ...
- (原创)Stanford Machine Learning (by Andrew NG) --- (week 6) Advice for Applying Machine Learning & Machine Learning System Design
(1) Advice for applying machine learning Deciding what to try next 现在我们已学习了线性回归.逻辑回归.神经网络等机器学习算法,接下来 ...
随机推荐
- canvas_基于canvan绘制的双半圆环进度条
效果图 实现原理: 1.使用canvas绘制两个半圆弧,底图灰色半圆弧和颜色进度圆弧. 2.利用setInterval计时器,逐步改变颜色进度条,达到进度条的效果. 效果代码: <!DOCTYP ...
- AndroidStudio获得发布版安全码SHA1
耗了一下午才搞定 在cmd中: 1.打开keytool的目录:即JDK的安装目录 2.输入口令: (E:\tenyears\tenyears\app是keystore文件的目录)
- Ribbon/Feign/Zuul retry
原文 https://github.com/spring-cloud/spring-cloud-netflix/issues/1577 I'm using Spring Cloud Camden SR ...
- java===java基础学习(1)---数据类型,运算,变量,常量
今天起开始了java的学习之路,主要学习了数据类型和运算,变量,常量.基本和python有很多相通的地方,所以看起来很容易上手.下面是学习笔记! package testbotoo; public c ...
- 浅谈linux的死锁检测 【转】
转自:http://www.blog.chinaunix.net/uid-25942458-id-3823545.html 死锁:就是多个进程(≥2)因为争夺资源而相互等待的一种现象,若无外力推动,将 ...
- elasticsearch批量删除(查询删除)
注:delete by query只适用于低于elasticsearch2.0的版本(不包含2.0).有两种形式: 1.无请求体 curl -XDELETE 'localhost:9200/twitt ...
- 深度学习方法:受限玻尔兹曼机RBM(二)网络模型
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术.应用感兴趣的同学加入 上解上一篇RBM(一)基本概念, ...
- 何時需要重启 OFBiz
你在做如下更改時需要重新启動OFBiz服務器: - Java文件(記得要重新編譯) - 配置/.properties文件 - entitymodel或entitygroup XML定義文件 - 服務或 ...
- 图形界面远程访问Linux(Debian安装VNC以及开机启动)
https://blog.csdn.net/wangxiaopeng0329/article/details/51569882
- java入门概念梳理总结
Java入门学习 简介 public class HelloWorld { public static void main(String []args) { System.out.println(&q ...