源地址:http://blog.csdn.net/ppn029012/article/details/8923501

1. 赌场风云(背景介绍)

最近一个赌场的老板发现生意不畅,于是派出手下去赌场张望。经探子回报,有位大叔在赌场中总能赢到钱,玩得一手好骰子,几乎是战无不胜。而且每次玩骰子的时候周围都有几个保镖站在身边,让人不明就里,只能看到每次开局,骰子飞出,沉稳落地。老板根据多年的经验,推测这位不善之客使用的正是江湖失传多年的"偷换骰子大法”(编者注:偷换骰子大法,用兜里自带的骰子偷偷换掉均匀的骰子)。老板是个冷静的人,看这位大叔也不是善者,不想轻易得罪他,又不想让他坏了规矩。正愁上心头,这时候进来一位名叫HMM帅哥,告诉老板他有一个很好的解决方案。

不用近其身,只要在远处装个摄像头,把每局的骰子的点数都记录下来。

然后HMM帅哥将会运用其强大的数学内力,用这些数据推导出

1. 该大叔是不是在出千?

2. 如果是在出千,那么他用了几个作弊的骰子? 还有当前是不是在用作弊的骰子。

3. 这几个作弊骰子出现各点的概率是多少?

天呐,老板一听,这位叫HMM的甚至都不用近身,就能算出是不是在作弊,甚至都能算出别人作弊的骰子是什么样的。那么,只要再当他作弊时,派人围捕他,当场验证骰子就能让他哑口无言。

2. HMM是何许人也?

在让HMM开展调查活动之前,该赌场老板也对HMM作了一番调查。

HMM(Hidden Markov Model), 也称隐性马尔可夫模型,是一个概率模型,用来描述一个系统隐性状态的转移和隐性状态的表现概率。

系统的隐性状态指的就是一些外界不便观察(或观察不到)的状态, 比如在当前的例子里面, 系统的状态指的是大叔使用骰子的状态,即

{正常骰子, 作弊骰子1, 作弊骰子2,...}

隐性状态的表现也就是, 可以观察到的,由隐性状态产生的外在表现特点。这里就是说, 骰子掷出的点数.

{1,2,3,4,5,6}

HMM模型将会描述,系统隐性状态的转移概率。也就是大叔切换骰子的概率,下图是一个例子,这时候大叔切换骰子的可能性被描述得淋漓尽致。

很幸运的,这么复杂的概率转移图,竟然能用简单的矩阵表达, 其中a_{ij}代表的是从i状态到j状态发生的概率

当然同时也会有,隐性状态表现转移概率。也就是骰子出现各点的概率分布,
(e.g. 作弊骰子1能有90%的机会掷到六,作弊骰子2有85%的机会掷到'小’). 给个图如下,

隐性状态的表现分布概率也可以用矩阵美丽地表示出来,

 

把这两个东西总结起来,就是整个HMM模型。

这个模型描述了隐性状态的转换的概率,同时也描述了每个状态外在表现的概率的分布。总之,HMM模型就能够描述扔骰子大叔作弊的频率(骰子更换的概率),和大叔用的骰子的概率分布。有了大叔的HMM模型,就能把大叔看透,让他完全在阳光下现形。

3. HMM能干什么!

总结起来HMM能处理三个问题,

3.1 解码(Decoding)

解码就是需要从一连串的骰子中,看出来哪一些骰子是用了作弊的骰子,哪些是用的正常的骰子。

比如上图中,给出一串骰子序列(3,6,1,2..)和大叔的HMM模型, 我们想要计算哪一些骰子的结果(隐性状态表现)可能对是哪种骰子的结果(隐性状态).

3.2学习(Learning)

学习就是,从一连串的骰子中,学习到大叔切换骰子的概率,当然也有这些骰子的点数的分布概率。这是HMM最为恐怖也最为复杂的招数!!

3.3 估计(Evaluation)

估计说的是,在我们已经知道了该大叔的HMM模型的情况下,估测某串骰子出现的可能性概率。比如说,在我们已经知道大叔的HMM模型的情况下,我们就能直接估测到大叔扔到10个6或者8个1的概率。

4. HMM是怎么做到的?

(这章需要概率论,递归,动态规划的知识, 如果不感兴趣可以跳着第5节)

4.1 估计

估计是最容易的一招,在完全知道了大叔的HMM模型的情况下,我们很容易就能对其做出估计。

现在我们有了大叔的状态转移概率矩阵A,B就能够进行估计。比如我们想知道这位大叔下一局连续掷出10个6的概率是多少? 如下

这表示的是,在一开始隐性状态(s0)为1,也就是一开始拿着的是正常的骰子的情况下,这位大叔连续掷出10个6的概率。

现在问题难就难在,我们虽然知道了HMM的转换概率,和观察到的状态V{1:T}, 但是我们却不知道实际的隐性的状态变化。

好吧,我们不知道隐性状态的变化,那好吧,我们就先假设一个隐性状态序列,
假设大叔前5个用的是正常骰子, 后5个用的是作弊骰子1.

好了,那么我们可以计算,在这种隐性序列假设下掷出10个6的概率.

这个概率其实就是,隐性状态表现概率B的乘积.

但是问题又出现了,刚才那个隐性状态序列是我假设的,而实际的序列我不知道,这该怎么办。好办,把所有可能出现的隐状态序列组合全都试一遍就可以了。于是,

R就是所有可能的隐性状态序列的集合。的嗯,现在问题好像解决了,我们已经能够通过尝试所有组合来获得出现的概率值,并且可以通过A,B矩阵来计算出现的总概率。
但是问题又出现了,可能的集合太大了, 比如有三种骰子,有10次选择机会, 那么总共的组合会有3^10次...这个量级O(c^T)太大了,当问题再大一点时候,组合的数目就会大得超出了计算的可能。所以我们需要一种更有效的计算P(V(1:T)概率的方法。
比如说如下图的算法可以将计算P(V1:T)的计算复杂度降低至O(cT).
有了这个方程,我们就能从t=0的情况往前推导,一直推导出P(V1:T)的概率。下面让我们算一算,大叔掷出3,2,1这个骰子序列的可能性有多大(假设初始状态为1, 也就是大叔前一次拿着的是正常的骰子)?
 

4.2 解码(Decoding)

解码的过程就是在给出一串序列的情况下和已知HMM模型的情况下,找到最可能的隐性状态序列。

用数学公式表示就是,
(V是Visible可见序列, w是隐性状态序列, A,B是HMM状态转移概率矩阵)

还记得以下公式,

然后又可以使用估计(4.1)中的前向推导法,计算出最大的P(w(1:T),
V(1:T)).

在完成前向推导法之后,再使用后向追踪法(Back
Tracking),对求解出能令这个P(w(1:T), V(1:T))最大的隐性序列.这个算法被称为维特比算法(Viterbi Algorithm).

 

4.2.1 维特比算法找寻最有可能的隐性序列

 

这是动态规划算法的一种, 解法都是一样的, 找到递归方程后用前向推导求解.然后使用后向追踪法找到使得方程达到最优解的组合. 以下是一个计算骰子序列{1,2,6}最有可能的隐性序列组合.(初始状态为1=正常骰子,)

大内密探HMM(转)的更多相关文章

  1. [综]隐马尔可夫模型Hidden Markov Model (HMM)

    http://www.zhihu.com/question/20962240 Yang Eninala杜克大学 生物化学博士 线性代数 收录于 编辑推荐 •2216 人赞同 ×××××11月22日已更 ...

  2. 结巴分词3--基于汉字成词能力的HMM模型识别未登录词

    作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 1 算法简介 在 结巴分词2--基于前缀词典及动态规划实现分词 博 ...

  3. 一文搞懂HMM(隐马尔可夫模型)

    什么是熵(Entropy) 简单来说,熵是表示物质系统状态的一种度量,用它老表征系统的无序程度.熵越大,系统越无序,意味着系统结构和运动的不确定和无规则:反之,,熵越小,系统越有序,意味着具有确定和有 ...

  4. 【中文分词】隐马尔可夫模型HMM

    Nianwen Xue在<Chinese Word Segmentation as Character Tagging>中将中文分词视作为序列标注问题(sequence labeling ...

  5. HMM基本原理及其实现(隐马尔科夫模型)

    HMM(隐马尔科夫模型)基本原理及其实现 HMM基本原理 Markov链:如果一个过程的“将来”仅依赖“现在”而不依赖“过去”,则此过程具有马尔可夫性,或称此过程为马尔可夫过程.马尔可夫链是时间和状态 ...

  6. 转:隐马尔可夫模型(HMM)攻略

    隐马尔可夫模型 (Hidden Markov Model,HMM) 最初由 L. E. Baum 和其它一些学者发表在一系列的统计学论文中,随后在语言识别,自然语言处理以及生物信息等领域体现了很大的价 ...

  7. Atitit 马尔可夫过程(Markov process) hmm隐马尔科夫。 马尔可夫链,的原理attilax总结

    Atitit 马尔可夫过程(Markov process) hmm隐马尔科夫. 马尔可夫链,的原理attilax总结 1. 马尔可夫过程1 1.1. 马尔科夫的应用 生成一篇"看起来像文章的 ...

  8. 机器学习&数据挖掘笔记_25(PGM练习九:HMM用于分类)

    前言: 本次实验是用EM来学习HMM中的参数,并用学好了的HMM对一些kinect数据进行动作分类.实验内容请参考coursera课程:Probabilistic Graphical Models 中 ...

  9. PRML读书会第十三章 Sequential Data(Hidden Markov Models,HMM)

    主讲人 张巍 (新浪微博: @张巍_ISCAS) 软件所-张巍<zh3f@qq.com> 19:01:27 我们开始吧,十三章是关于序列数据,现实中很多数据是有前后关系的,例如语音或者DN ...

随机推荐

  1. JS中的日期内置函数

    用JS中的日期内置函数实现在页面显示:“今天是:2013年9月26日14:32:45”. var date=new Date(Date.parse('9/26/2013 14:32:45'));   ...

  2. Yii 1.1.17 二、Gii创建后台与后台登录验证

    一.用Gii创建后台模块 1.启用gii,在config/main.php 'gii' => array( 'class' => 'system.gii.GiiModule', 'pass ...

  3. Asp.Net Forms获取UEeditor内容

    UEeditor是比较常用的富文本编辑器. 获取编辑器的内容,需要使用js获取,官方提供的方法是:UE.getEditor('editor').getContent(); 官方提供的.net例子中是使 ...

  4. ajax之深入解析(1)

    AJAX = Asynchronous JavaScript and XML(异步的 JavaScript 和 XML).AJAX 是一种在无需重新加载整个网页的情况下,能够更新部分网页的技术. AJ ...

  5. python初学--文件操作、字典

    文件读写 1.先打开文件 2.读取/写入内容 3.保存文件   文件的open模式有三种 1.w 写模式,它是不能读的 只要用w打开文件,文件中的东西都会被清空 w+, 写读模式,只要沾上w 就会清空 ...

  6. 虚拟机 VMware Workstation12 安装OS X 系统

      Windows下虚拟机安装Mac OS X —– VMware Workstation12安装Mac OS X 10.11 本文即将介绍WIN虚拟MAC的教程.完整详细教程(包含安装中的一些问题) ...

  7. Leetcode 之Wildcard Matching(32)

    跟上题类似,主要考虑‘*’的匹配问题.如果遇到‘*’,则跳过继续匹配,如果不匹配,则s++,重新扫描. bool isMatch2(const char *s, const char *p) { if ...

  8. Oracle11g常用的命令

    cmd H: cd H:\oracle\product\\Db_1\BIN exp jz/jz file=C:/QS-BF20131017.dmp (备份) imp jz/jz file=C:/BF2 ...

  9. PHP必用代码片段

    在编写代码的时候有个神奇的工具总是好的!下面这里收集了 50+ PHP 代码片段,可以帮助你开发 PHP 项目. 这些 PHP 片段对于 PHP 初学者也非常有帮助,非常容易学习,让我们开始学习吧- ...

  10. [loj#2566][BZOJ5333] [Sdoi2018]荣誉称号 树形dp

    #2566. 「SDOI2018」荣誉称号   休闲游戏玩家小 Q 不仅在算法竞赛方面取得了优异的成绩,还在一款收集钻石的游戏中排名很高. 这款游戏一共有 n 种不同类别的钻石,编号依次为 1 到 n ...