POJ2533裸的LIS,时间复杂度为O(n^2)

 #include<iostream>
#include<cstdio>
using namespace std;
const int MAXN=+;
int a[MAXN];
int dp[MAXN];
int n,ans; int main()
{
scanf("%d",&n);
for (int i=;i<n;i++)
{
scanf("%d",&a[i]);
dp[i]=;
}
ans=-;
for (int i=;i<n;i++)
{
for (int j=;j<i;j++)
if (a[j]<a[i] && dp[j]+>dp[i])
{
dp[i]=dp[j]+;
}
if (dp[i]>ans)
{
ans=dp[i];
}
}
cout<<ans<<endl;
return ;
}

POJ1631

两条线路i与j不交叉的前提条件是a[i]<a[j],即上升子序列。用二分搜索+LIS,时间复杂度为O(n^2),具体解释详见《挑战程序设计竞赛2.3记录结果在利用的“动态规划”》P65

 #include<iostream>
#include<cstdio>
using namespace std;
const int MAXN=+;
const int INF=+;
int a[MAXN];
int dp[MAXN];//dp[i]表示长度为i+1的上升子序列末位元素的最小值
int n,m,ans,l,r; int search(int k)
{
int ul=l,ur=r;
while (ur-ul>)
{
int mid=(ur+ul)/;
if (dp[mid]>=k) ur=mid;
else ul=mid;
}
return ur;
} int main()
{
scanf("%d",&m);
for (int kase=;kase<m;kase++)
{
scanf("%d",&n);
for (int i=;i<n;i++)
{
scanf("%d",&a[i]);
dp[i]=INF;
}
l=-;
r=;
for (int i=;i<n;i++)
{
int pos=search(a[i]);
dp[pos]=a[i];
if (pos==r) r++;
}
cout<<r<<endl;
}
return ;
}

【动态规划+二分查找】POJ2533&POJ1631最长上升子序列(LIS)的更多相关文章

  1. 【部分转载】:【lower_bound、upperbound讲解、二分查找、最长上升子序列(LIS)、最长下降子序列模版】

    二分 lower_bound lower_bound()在一个区间内进行二分查找,返回第一个大于等于目标值的位置(地址) upper_bound upper_bound()与lower_bound() ...

  2. 动态规划(DP),最长递增子序列(LIS)

    题目链接:http://poj.org/problem?id=2533 解题报告: 状态转移方程: dp[i]表示以a[i]为结尾的LIS长度 状态转移方程: dp[0]=1; dp[i]=max(d ...

  3. 最长回文子序列LCS,最长递增子序列LIS及相互联系

    最长公共子序列LCS Lintcode 77. 最长公共子序列 LCS问题是求两个字符串的最长公共子序列 \[ dp[i][j] = \left\{\begin{matrix} & max(d ...

  4. 最长上升子序列LIS(51nod1134)

    1134 最长递增子序列 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 给出长度为N的数组,找出这个数组的最长递增子序列.(递增子序列是指,子序列的元素是递 ...

  5. 一个数组求其最长递增子序列(LIS)

    一个数组求其最长递增子序列(LIS) 例如数组{3, 1, 4, 2, 3, 9, 4, 6}的LIS是{1, 2, 3, 4, 6},长度为5,假设数组长度为N,求数组的LIS的长度, 需要一个额外 ...

  6. 2.16 最长递增子序列 LIS

    [本文链接] http://www.cnblogs.com/hellogiser/p/dp-of-LIS.html [分析] 思路一:设序列为A,对序列进行排序后得到B,那么A的最长递增子序列LIS就 ...

  7. 题解 最长上升子序列 LIS

    最长上升子序列 LIS Description 给出一个 1 ∼ n (n ≤ 10^5) 的排列 P 求其最长上升子序列长度 Input 第一行一个正整数n,表示序列中整数个数: 第二行是空格隔开的 ...

  8. 1. 线性DP 300. 最长上升子序列 (LIS)

    最经典单串: 300. 最长上升子序列 (LIS) https://leetcode-cn.com/problems/longest-increasing-subsequence/submission ...

  9. 二维动态规划&&二分查找的动态规划&&最长递增子序列&&最长连续递增子序列

    题目描述与背景介绍 背景题目: [674. 最长连续递增序列]https://leetcode-cn.com/problems/longest-continuous-increasing-subseq ...

随机推荐

  1. [IOS]Xcode各版本官方下载及百度云盘下载, Mac和IOS及Xcode版本历史

    官方下载, 用开发者账户登录,建议用Safari浏览器下载. 官方下载地址: https://developer.apple.com/xcode/downloads/ 百度云盘下载地址 http:// ...

  2. 项目记录 -- zfs get all [volume] python实现的数据构造

    zfs get all [volume]命令实现中构造数据结构 一.zfs get all [volume]命令源代码C实现中用到的数据结构有zprop_get_cbdata 和 callback_d ...

  3. sqlmap参数说明

    --delay 设置每隔几秒测试一次注入 --safe-url 设置sqlmap要访问的正常url --safe-freq 设置每测试多少条注入语句后才去访问safe-url --code 设置能正常 ...

  4. 【设计模式】原型模式(Prototype)

    摘要: 1.本文将详细介绍原型模式的原理和实际代码中特别是Android系统代码中的应用. 纲要: 1. 引入原型模式 2. 原型模式的概念及优缺点介绍 3. 原型模式对拷贝的使用 4. 原型模式在A ...

  5. python 命名规范最近遇到的问题

    1.remove redundant parentheses 出去多余的括号,写C#习惯了先加个括号,python的if不用加括号. 改为:if chrome_args().get("hea ...

  6. 图论-最小生成树-Kruskal算法

    有关概念: 最小生成树:在连通图G中,连接图G所有顶点且总权最小的边构成的树 思路: 首先对边按权从小到大排序,紧接着枚举每一条边,如果两个结点的祖先结点不同(并查集),则连上此边,直到边数等于结点数 ...

  7. Nginx-1.6.3反向代理

    源码安装nginx cat /etc/redhat-release uname -rm yum install pcre-devel openssl-devel -y rpm -qa pcre pcr ...

  8. 属性名、变量名与 内部关键字 重名 加&

    procedure TForm4.btn3Click(Sender: TObject); var MyQj: TQJson; MyPrinter: TPrinter; begin MyQj := TQ ...

  9. LeetCode解题报告—— Search in Rotated Sorted Array & Search for a Range & Valid Sudoku

    1. Search in Rotated Sorted Array Suppose an array sorted in ascending order is rotated(轮流,循环) at so ...

  10. DataSet、DataTable、DataRow的数据复制方法

    DataSet 对象是支持 ADO.NET的断开式.分布式数据方案的核心对象 ,用途非常广泛.我们很多时候需要使用其中的数据,比如取得一个DataTable的数据或者复制另一个DataTabe中的数据 ...