Matching In Multiplication

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Others)
Total Submission(s): 787    Accepted Submission(s): 222

Problem Description
In the mathematical discipline of graph theory, a bipartite graph is a graph whose vertices can be divided into two disjoint sets U and V (that is, U and V are each independent sets) such that every edge connects a vertex in U to one in V. Vertex sets U and V are usually called the parts of the graph. Equivalently, a bipartite graph is a graph that does not contain any odd-length cycles. A matching in a graph is a set of edges without common vertices. A perfect matching is a matching that each vertice is covered by an edge in the set.

Little Q misunderstands the definition of bipartite graph, he thinks the size of U is equal to the size of V, and for each vertex p in U, there are exactly two edges from p. Based on such weighted graph, he defines the weight of a perfect matching as the product of all the edges' weight, and the weight of a graph is the sum of all the perfect matchings' weight.

Please write a program to compute the weight of a weighted ''bipartite graph'' made by Little Q.

 
Input
The first line of the input contains an integer T(1≤T≤15), denoting the number of test cases.

In each test case, there is an integer n(1≤n≤300000) in the first line, denoting the size of U. The vertex in U and V are labeled by 1,2,...,n.

For the next n lines, each line contains 4 integers vi,1,wi,1,vi,2,wi,2(1≤vi,j≤n,1≤wi,j≤109), denoting there is an edge between Ui and Vvi,1, weighted wi,1, and there is another edge between Ui and Vvi,2, weighted wi,2.

It is guaranteed that each graph has at least one perfect matchings, and there are at most one edge between every pair of vertex.

 
Output
For each test case, print a single line containing an integer, denoting the weight of the given graph. Since the answer may be very large, please print the answer modulo 998244353.
 
Sample Input
1
2
2 1 1 4
1 4 2 3
 
Sample Output
16
/**
题目:hdu6073 Matching In Multiplication
链接:http://acm.hdu.edu.cn/showproblem.php?pid=6073
题意: 思路:
首先如果一个点的度数为1,那么它的匹配方案是固定的,继而我们可以去掉这一对点。通过拓扑我们可以不断去掉所有度数为1的点。 那么剩下的图中左右各有m个点,每个点度数都不小于2,且左边每个点度数都是2,而右侧总度数是2m,因此右侧只能是每个点度数都是2。 这说明这个图每个连通块是个环,在环上间隔着取即可,一共两种方案。 时间复杂度O(n)。 */
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<vector>
#include<queue>
#include<cstring>
#include<cmath>
using namespace std;
typedef long long LL;
#define lson L,m,rt<<1
typedef pair<int,int> P;
#define rson m+1,R,rt<<1|1
const int mod = ;
const double eps = 1e-;
const int N = 6e5+;
int cnt[N], vis[N];
int a[N], an, n;
LL ans;
vector<P>G[N];
queue<int> q;
int now;
void solve(int r,int f,LL &ansl,LL &ansr,int step)
{
for(int i = ; i < (int)G[r].size(); i++){
if(G[r][i].first!=f&&(vis[G[r][i].first]==||G[r][i].first==now)){
vis[G[r][i].first] = ;
if(step%==){
ansl = ansl*G[r][i].second%mod;
}else
{
ansr = ansr*G[r][i].second%mod;
}
if(G[r][i].first==now){///回到起点。
return ;
}else
return solve(G[r][i].first,r,ansl,ansr,step+);
}
}
}
/*
void input()
{
for(int i = 1; i <= n; i+=2){
G[i].push_back(P(i+n,1));
G[i].push_back(P(i+n+1,1));
G[i+1].push_back(P(i+n,1));
G[i+1].push_back(P(i+n+1,1));
G[i+n].push_back(P(i,1));
G[i+n+1].push_back(P(i,1));
G[i+n].push_back(P(1+i,1));
G[i+n+1].push_back(P(1+i,1));
cnt[i+n]+=2;
cnt[i+n+1]+=2;
}
}*/
int main()
{
//freopen("C:\\Users\\accqx\\Desktop\\in.txt","r",stdin);
int T;
cin>>T;
int u1, w1, u2, w2;
while(T--)
{
scanf("%d",&n);
memset(cnt, , sizeof cnt);
memset(vis, , sizeof vis);
for(int i = ; i <= *n; i++) G[i].clear();
//input();
for(int i = ; i <= n; i++){
scanf("%d%d%d%d",&u1,&w1,&u2,&w2);
G[i].push_back(P(u1+n,w1));
G[i].push_back(P(u2+n,w2));
G[u1+n].push_back(P(i,w1));
G[u2+n].push_back(P(i,w2));
cnt[u1+n]++;
cnt[u2+n]++;
}
ans = ;
while(!q.empty()) q.pop();
for(int i = n+; i <= n*; i++){
if(cnt[i]==){
q.push(i);
}
}
while(!q.empty()){
int r = q.front();
q.pop();
int len = G[r].size();
int pos;
for(int i = ; i < len; i++){
if(vis[G[r][i].first]==){
vis[G[r][i].first] = ;
ans = ans*G[r][i].second%mod;
pos = G[r][i].first;
break;
}
} len = G[pos].size();
for(int i = ; i < len; i++){
if(G[pos][i].first!=r){
cnt[G[pos][i].first]--;
if(cnt[G[pos][i].first]==){
q.push(G[pos][i].first);
}
}
}
}
LL ansl, ansr;
for(int i = ; i <= n; i++){
if(vis[i]==){
now = i;
vis[i] = ;
ansl = ansr = ;
solve(i,-,ansl,ansr,);
ans = ans*(ansl+ansr)%mod;
}
}
printf("%lld\n",ans);
}
return ;
}

hdu6073 Matching In Multiplication 分析+拓扑序的更多相关文章

  1. HDU 6073 Matching In Multiplication(拓扑排序)

    Matching In Multiplication Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 524288/524288 K ( ...

  2. HDU 6073 Matching In Multiplication(拓扑排序+思维)

    http://acm.hdu.edu.cn/showproblem.php?pid=6073 题意:有个二分图,左边和右边的顶点数相同,左边的顶点每个顶点度数为2.现在有个屌丝理解错了最佳完美匹配,它 ...

  3. HDU 6073 Matching In Multiplication dfs遍历环 + 拓扑

    Matching In Multiplication Problem DescriptionIn the mathematical discipline of graph theory, a bipa ...

  4. [正经分析] DAG上dp两种做法的区别——拓扑序与SPFA

    在下最近刷了几道DAG图上dp的题目. 要提到的第一道是NOIP原题<最优贸易>.这是一个缩点后带点权的DAG上dp,它同时规定了起点和终点. 第二道是洛谷上的NOI导刊题目<最长路 ...

  5. HDU 6073 - Matching In Multiplication | 2017 Multi-University Training Contest 4

    /* HDU 6073 - Matching In Multiplication [ 图论 ] | 2017 Multi-University Training Contest 4 题意: 定义一张二 ...

  6. 2017 多校4 Matching In Multiplication(二分图)

    Matching In Multiplication 题解: 首先如果一个点的度数为1,那么它的匹配方案是固定的,继而我们可以去掉这一对点.通过拓扑我们可以不断去掉所有度数为1的点. 那么剩下的图中左 ...

  7. 【BZOJ-3832】Rally 拓扑序 + 线段树 (神思路题!)

    3832: [Poi2014]Rally Time Limit: 20 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 168  Solved:  ...

  8. BZOJ-4010 菜肴制作 贪心+堆+(拓扑图拓扑序)

    无意做到...char哥还中途强势插入干我...然后据他所言,看了一会题,一转头,我爆了正解....可怕 4010: [HNOI2015]菜肴制作 Time Limit: 5 Sec Memory L ...

  9. hdu5438(2015长春赛区网络赛1002)拓扑序+DFS

    题意:给出一张无向图,每个节点有各自的权值,问在点数为奇数的圈中的点的权值总和是多少. 通过拓扑序的做法标记出所有非圈上的点,做法就是加每条边的时候将两点的入度都加一,然后将所有度数为1的点入队,删去 ...

随机推荐

  1. 在Eclipse中点击ctrl+h打开搜索界面,范围指定的项目中搜索包含person的文件

    ctrl+h ===>File Search Tab ===>在containing text里输入person,scope ==>selected resources,搜索就可以了

  2. .NET Framwork 之 托管代码的执行过程

    源代码代码第一次编译形成IL中间语言的托管代码,在运行时被Class Loader装载后进行JIT第二次编译形成托管的本地代码.在执行过程中,它会不断地检查当前我们执行的代码的安全性和规范性. Cla ...

  3. seo关键字优化

    SEO 第一: 标题关键字分析 分析和选择行业热门的关键字,并合理的应用于网站标题内及分布到各栏目页面和内页. 其实个人觉得标题.内容.以及与内容相关性链接必须要足.还有就是出现的层次感,例如: a) ...

  4. webDriver API——第6部分Locate elements By

    These are the attributes which can be used to locate elements. See the Locating Elements chapter for ...

  5. 库会因为权限问题无法打开——selinux开启严格模式

    第三方库会因为提高selinux权限等级而无法打开,若使用setenforce 0可以打开则可确认.需要增加相应权限.修改te权限. 查看SELinux状态: 1./usr/sbin/sestatus ...

  6. [Java Performance] JVM 线程调优

    调整线程栈空间 当很缺少内存时,能够调整线程使用的内存. 每一个线程都有一个栈,用来记录该线程的调用栈信息.线程中的栈的默认空间是有OS和JVM的版本号决定的: OS 32-bit 64-bit Li ...

  7. StarUML 破解方法

    在安装目录的:StarUML\www\license\node 找到LicenseManagerDomain.js 在 try 前面加上: return { name:"0xcb" ...

  8. Java中正数与负数操作>>、>>>的区别

    以下为个人理解,有不对的地方请提出 Java中,>>.>>>都是在数字的二进制的补码中进行的 正数的补码为本身 如33的二进制表示为 00000000 00000000 ...

  9. HTTPSConnectionPool(host='xxxxx', port=443): Max retries exceeded with url:xxxxxxxx (Caused by NewConnectionError('<urllib3.connect,Max retries exceeded with ,(Caused by NewConnectionError

    HTTPSConnectionPool(host='f6ws-sha8re-o88k.s3.ama66zaws.com', port=443): Max retries exceeded with u ...

  10. SpringCloud系列十六:Feign使用Hystrix

    1. 回顾 上文讲解了使用注解@HystrixCommand的fallbackMethod属性实现回退.然而,Feign是以接口形式工作的, 它没有方法体,前文讲解的方式显然不适用与Feign. 事实 ...