hdu6073 Matching In Multiplication 分析+拓扑序
Matching In Multiplication
Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Others)
Total Submission(s): 787 Accepted Submission(s): 222
Little Q misunderstands the definition of bipartite graph, he thinks the size of U is equal to the size of V, and for each vertex p in U, there are exactly two edges from p. Based on such weighted graph, he defines the weight of a perfect matching as the product of all the edges' weight, and the weight of a graph is the sum of all the perfect matchings' weight.
Please write a program to compute the weight of a weighted ''bipartite graph'' made by Little Q.
In each test case, there is an integer n(1≤n≤300000) in the first line, denoting the size of U. The vertex in U and V are labeled by 1,2,...,n.
For the next n lines, each line contains 4 integers vi,1,wi,1,vi,2,wi,2(1≤vi,j≤n,1≤wi,j≤109), denoting there is an edge between Ui and Vvi,1, weighted wi,1, and there is another edge between Ui and Vvi,2, weighted wi,2.
It is guaranteed that each graph has at least one perfect matchings, and there are at most one edge between every pair of vertex.
2
2 1 1 4
1 4 2 3
/**
题目:hdu6073 Matching In Multiplication
链接:http://acm.hdu.edu.cn/showproblem.php?pid=6073
题意: 思路:
首先如果一个点的度数为1,那么它的匹配方案是固定的,继而我们可以去掉这一对点。通过拓扑我们可以不断去掉所有度数为1的点。 那么剩下的图中左右各有m个点,每个点度数都不小于2,且左边每个点度数都是2,而右侧总度数是2m,因此右侧只能是每个点度数都是2。 这说明这个图每个连通块是个环,在环上间隔着取即可,一共两种方案。 时间复杂度O(n)。 */
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<vector>
#include<queue>
#include<cstring>
#include<cmath>
using namespace std;
typedef long long LL;
#define lson L,m,rt<<1
typedef pair<int,int> P;
#define rson m+1,R,rt<<1|1
const int mod = ;
const double eps = 1e-;
const int N = 6e5+;
int cnt[N], vis[N];
int a[N], an, n;
LL ans;
vector<P>G[N];
queue<int> q;
int now;
void solve(int r,int f,LL &ansl,LL &ansr,int step)
{
for(int i = ; i < (int)G[r].size(); i++){
if(G[r][i].first!=f&&(vis[G[r][i].first]==||G[r][i].first==now)){
vis[G[r][i].first] = ;
if(step%==){
ansl = ansl*G[r][i].second%mod;
}else
{
ansr = ansr*G[r][i].second%mod;
}
if(G[r][i].first==now){///回到起点。
return ;
}else
return solve(G[r][i].first,r,ansl,ansr,step+);
}
}
}
/*
void input()
{
for(int i = 1; i <= n; i+=2){
G[i].push_back(P(i+n,1));
G[i].push_back(P(i+n+1,1));
G[i+1].push_back(P(i+n,1));
G[i+1].push_back(P(i+n+1,1));
G[i+n].push_back(P(i,1));
G[i+n+1].push_back(P(i,1));
G[i+n].push_back(P(1+i,1));
G[i+n+1].push_back(P(1+i,1));
cnt[i+n]+=2;
cnt[i+n+1]+=2;
}
}*/
int main()
{
//freopen("C:\\Users\\accqx\\Desktop\\in.txt","r",stdin);
int T;
cin>>T;
int u1, w1, u2, w2;
while(T--)
{
scanf("%d",&n);
memset(cnt, , sizeof cnt);
memset(vis, , sizeof vis);
for(int i = ; i <= *n; i++) G[i].clear();
//input();
for(int i = ; i <= n; i++){
scanf("%d%d%d%d",&u1,&w1,&u2,&w2);
G[i].push_back(P(u1+n,w1));
G[i].push_back(P(u2+n,w2));
G[u1+n].push_back(P(i,w1));
G[u2+n].push_back(P(i,w2));
cnt[u1+n]++;
cnt[u2+n]++;
}
ans = ;
while(!q.empty()) q.pop();
for(int i = n+; i <= n*; i++){
if(cnt[i]==){
q.push(i);
}
}
while(!q.empty()){
int r = q.front();
q.pop();
int len = G[r].size();
int pos;
for(int i = ; i < len; i++){
if(vis[G[r][i].first]==){
vis[G[r][i].first] = ;
ans = ans*G[r][i].second%mod;
pos = G[r][i].first;
break;
}
} len = G[pos].size();
for(int i = ; i < len; i++){
if(G[pos][i].first!=r){
cnt[G[pos][i].first]--;
if(cnt[G[pos][i].first]==){
q.push(G[pos][i].first);
}
}
}
}
LL ansl, ansr;
for(int i = ; i <= n; i++){
if(vis[i]==){
now = i;
vis[i] = ;
ansl = ansr = ;
solve(i,-,ansl,ansr,);
ans = ans*(ansl+ansr)%mod;
}
}
printf("%lld\n",ans);
}
return ;
}
hdu6073 Matching In Multiplication 分析+拓扑序的更多相关文章
- HDU 6073 Matching In Multiplication(拓扑排序)
Matching In Multiplication Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 524288/524288 K ( ...
- HDU 6073 Matching In Multiplication(拓扑排序+思维)
http://acm.hdu.edu.cn/showproblem.php?pid=6073 题意:有个二分图,左边和右边的顶点数相同,左边的顶点每个顶点度数为2.现在有个屌丝理解错了最佳完美匹配,它 ...
- HDU 6073 Matching In Multiplication dfs遍历环 + 拓扑
Matching In Multiplication Problem DescriptionIn the mathematical discipline of graph theory, a bipa ...
- [正经分析] DAG上dp两种做法的区别——拓扑序与SPFA
在下最近刷了几道DAG图上dp的题目. 要提到的第一道是NOIP原题<最优贸易>.这是一个缩点后带点权的DAG上dp,它同时规定了起点和终点. 第二道是洛谷上的NOI导刊题目<最长路 ...
- HDU 6073 - Matching In Multiplication | 2017 Multi-University Training Contest 4
/* HDU 6073 - Matching In Multiplication [ 图论 ] | 2017 Multi-University Training Contest 4 题意: 定义一张二 ...
- 2017 多校4 Matching In Multiplication(二分图)
Matching In Multiplication 题解: 首先如果一个点的度数为1,那么它的匹配方案是固定的,继而我们可以去掉这一对点.通过拓扑我们可以不断去掉所有度数为1的点. 那么剩下的图中左 ...
- 【BZOJ-3832】Rally 拓扑序 + 线段树 (神思路题!)
3832: [Poi2014]Rally Time Limit: 20 Sec Memory Limit: 128 MBSec Special JudgeSubmit: 168 Solved: ...
- BZOJ-4010 菜肴制作 贪心+堆+(拓扑图拓扑序)
无意做到...char哥还中途强势插入干我...然后据他所言,看了一会题,一转头,我爆了正解....可怕 4010: [HNOI2015]菜肴制作 Time Limit: 5 Sec Memory L ...
- hdu5438(2015长春赛区网络赛1002)拓扑序+DFS
题意:给出一张无向图,每个节点有各自的权值,问在点数为奇数的圈中的点的权值总和是多少. 通过拓扑序的做法标记出所有非圈上的点,做法就是加每条边的时候将两点的入度都加一,然后将所有度数为1的点入队,删去 ...
随机推荐
- NIO的简单Demo
package jesse.test1; import java.io.IOException; import java.net.InetAddress; import java.net.InetSo ...
- Lidgren Network Library
Lidgren Network Library Classes Class Description NetAESEncryption AES encryption NetBitVector Fix ...
- vue - config(dev.env.js和prov.env.js)
描述:配置产品模式.打包模式:开发还是打包,以最佳运行(不配置则有一个大大的Warning!!!) 官网:https://www.webpackjs.com/concepts/mode/
- vc 获取函数名称真实地址
首先写一个很简单的main函数: int main(){ printf("main的地址(?):%08x",main); } 单步调试,可得知 main函数的真实入口地址是:00b ...
- Gamescom2014:中国游戏公司37.com进军西方海外市场
在2014年的德国科隆国际游戏展上.Xsolla曾与37.com聊天.我们讨论了中国公司眼下进军西方市场的战略,谈到营销的最有效方法.游戏货币化,并讨论在欧洲和土耳其的网页游戏的前景. 37wan 能 ...
- 在LoadRunner中查找和替换字符串
参考<Search & Replace function for LoadRunner>: http://ptfrontline.wordpress.com/2009/03/13/ ...
- 《The Story of My Life》Introductiom - Historical and Literary Context - Education of the Deaf and Blind
At the time the Story of My Life was published, the idea of a disabled person as an active member of ...
- springmvc管理资源开放
关于web.xml的url映射的小知识:<url-pattern>/</url-pattern> 会匹配到/login这样的路径型url,不会匹配到模式为*.jsp这样的后缀 ...
- 利用nginx做tcp负载均衡
当前nginx-13.1已经支持tcp,ucp,unix域套接字三种负载均衡模式(http肯定支持,这个不用说).最近有需求需要对后端服务做负载均衡,因此考虑使用nginx来做. 1. 下载nginx ...
- unity3d的三种平面坐标系
unity3d有如下三种平面坐标系: 1.屏幕坐标系 2.视口坐标系viewport 3.GUI坐标系