hdu6073 Matching In Multiplication 分析+拓扑序
Matching In Multiplication
Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Others)
Total Submission(s): 787 Accepted Submission(s): 222
Little Q misunderstands the definition of bipartite graph, he thinks the size of U is equal to the size of V, and for each vertex p in U, there are exactly two edges from p. Based on such weighted graph, he defines the weight of a perfect matching as the product of all the edges' weight, and the weight of a graph is the sum of all the perfect matchings' weight.
Please write a program to compute the weight of a weighted ''bipartite graph'' made by Little Q.
In each test case, there is an integer n(1≤n≤300000) in the first line, denoting the size of U. The vertex in U and V are labeled by 1,2,...,n.
For the next n lines, each line contains 4 integers vi,1,wi,1,vi,2,wi,2(1≤vi,j≤n,1≤wi,j≤109), denoting there is an edge between Ui and Vvi,1, weighted wi,1, and there is another edge between Ui and Vvi,2, weighted wi,2.
It is guaranteed that each graph has at least one perfect matchings, and there are at most one edge between every pair of vertex.
2
2 1 1 4
1 4 2 3
/**
题目:hdu6073 Matching In Multiplication
链接:http://acm.hdu.edu.cn/showproblem.php?pid=6073
题意: 思路:
首先如果一个点的度数为1,那么它的匹配方案是固定的,继而我们可以去掉这一对点。通过拓扑我们可以不断去掉所有度数为1的点。 那么剩下的图中左右各有m个点,每个点度数都不小于2,且左边每个点度数都是2,而右侧总度数是2m,因此右侧只能是每个点度数都是2。 这说明这个图每个连通块是个环,在环上间隔着取即可,一共两种方案。 时间复杂度O(n)。 */
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<vector>
#include<queue>
#include<cstring>
#include<cmath>
using namespace std;
typedef long long LL;
#define lson L,m,rt<<1
typedef pair<int,int> P;
#define rson m+1,R,rt<<1|1
const int mod = ;
const double eps = 1e-;
const int N = 6e5+;
int cnt[N], vis[N];
int a[N], an, n;
LL ans;
vector<P>G[N];
queue<int> q;
int now;
void solve(int r,int f,LL &ansl,LL &ansr,int step)
{
for(int i = ; i < (int)G[r].size(); i++){
if(G[r][i].first!=f&&(vis[G[r][i].first]==||G[r][i].first==now)){
vis[G[r][i].first] = ;
if(step%==){
ansl = ansl*G[r][i].second%mod;
}else
{
ansr = ansr*G[r][i].second%mod;
}
if(G[r][i].first==now){///回到起点。
return ;
}else
return solve(G[r][i].first,r,ansl,ansr,step+);
}
}
}
/*
void input()
{
for(int i = 1; i <= n; i+=2){
G[i].push_back(P(i+n,1));
G[i].push_back(P(i+n+1,1));
G[i+1].push_back(P(i+n,1));
G[i+1].push_back(P(i+n+1,1));
G[i+n].push_back(P(i,1));
G[i+n+1].push_back(P(i,1));
G[i+n].push_back(P(1+i,1));
G[i+n+1].push_back(P(1+i,1));
cnt[i+n]+=2;
cnt[i+n+1]+=2;
}
}*/
int main()
{
//freopen("C:\\Users\\accqx\\Desktop\\in.txt","r",stdin);
int T;
cin>>T;
int u1, w1, u2, w2;
while(T--)
{
scanf("%d",&n);
memset(cnt, , sizeof cnt);
memset(vis, , sizeof vis);
for(int i = ; i <= *n; i++) G[i].clear();
//input();
for(int i = ; i <= n; i++){
scanf("%d%d%d%d",&u1,&w1,&u2,&w2);
G[i].push_back(P(u1+n,w1));
G[i].push_back(P(u2+n,w2));
G[u1+n].push_back(P(i,w1));
G[u2+n].push_back(P(i,w2));
cnt[u1+n]++;
cnt[u2+n]++;
}
ans = ;
while(!q.empty()) q.pop();
for(int i = n+; i <= n*; i++){
if(cnt[i]==){
q.push(i);
}
}
while(!q.empty()){
int r = q.front();
q.pop();
int len = G[r].size();
int pos;
for(int i = ; i < len; i++){
if(vis[G[r][i].first]==){
vis[G[r][i].first] = ;
ans = ans*G[r][i].second%mod;
pos = G[r][i].first;
break;
}
} len = G[pos].size();
for(int i = ; i < len; i++){
if(G[pos][i].first!=r){
cnt[G[pos][i].first]--;
if(cnt[G[pos][i].first]==){
q.push(G[pos][i].first);
}
}
}
}
LL ansl, ansr;
for(int i = ; i <= n; i++){
if(vis[i]==){
now = i;
vis[i] = ;
ansl = ansr = ;
solve(i,-,ansl,ansr,);
ans = ans*(ansl+ansr)%mod;
}
}
printf("%lld\n",ans);
}
return ;
}
hdu6073 Matching In Multiplication 分析+拓扑序的更多相关文章
- HDU 6073 Matching In Multiplication(拓扑排序)
Matching In Multiplication Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 524288/524288 K ( ...
- HDU 6073 Matching In Multiplication(拓扑排序+思维)
http://acm.hdu.edu.cn/showproblem.php?pid=6073 题意:有个二分图,左边和右边的顶点数相同,左边的顶点每个顶点度数为2.现在有个屌丝理解错了最佳完美匹配,它 ...
- HDU 6073 Matching In Multiplication dfs遍历环 + 拓扑
Matching In Multiplication Problem DescriptionIn the mathematical discipline of graph theory, a bipa ...
- [正经分析] DAG上dp两种做法的区别——拓扑序与SPFA
在下最近刷了几道DAG图上dp的题目. 要提到的第一道是NOIP原题<最优贸易>.这是一个缩点后带点权的DAG上dp,它同时规定了起点和终点. 第二道是洛谷上的NOI导刊题目<最长路 ...
- HDU 6073 - Matching In Multiplication | 2017 Multi-University Training Contest 4
/* HDU 6073 - Matching In Multiplication [ 图论 ] | 2017 Multi-University Training Contest 4 题意: 定义一张二 ...
- 2017 多校4 Matching In Multiplication(二分图)
Matching In Multiplication 题解: 首先如果一个点的度数为1,那么它的匹配方案是固定的,继而我们可以去掉这一对点.通过拓扑我们可以不断去掉所有度数为1的点. 那么剩下的图中左 ...
- 【BZOJ-3832】Rally 拓扑序 + 线段树 (神思路题!)
3832: [Poi2014]Rally Time Limit: 20 Sec Memory Limit: 128 MBSec Special JudgeSubmit: 168 Solved: ...
- BZOJ-4010 菜肴制作 贪心+堆+(拓扑图拓扑序)
无意做到...char哥还中途强势插入干我...然后据他所言,看了一会题,一转头,我爆了正解....可怕 4010: [HNOI2015]菜肴制作 Time Limit: 5 Sec Memory L ...
- hdu5438(2015长春赛区网络赛1002)拓扑序+DFS
题意:给出一张无向图,每个节点有各自的权值,问在点数为奇数的圈中的点的权值总和是多少. 通过拓扑序的做法标记出所有非圈上的点,做法就是加每条边的时候将两点的入度都加一,然后将所有度数为1的点入队,删去 ...
随机推荐
- C++ 初始化列表(转载)
何谓初始化列表 与其他函数不同,构造函数除了有名字,参数列表和函数体之外,还可以有初始化列表,初始化列表以冒号开头,后跟一系列以逗号分隔的初始化字段.在 C++中,struct和class的唯一区别是 ...
- Mac下访问windows的共享文件夹
Finder->前往->smb://<user>@<ip>
- js数组高阶方法reduce经典用法代码分享
以下是个人在工作中收藏总结的一些关于javascript数组方法reduce的相关代码片段,后续遇到其他使用这个函数的场景,将会陆续添加,这里作为备忘. javascript数组那么多方法,为什么我要 ...
- ajax同步和异步
// 方案2: 回调函数 // function getFile( callback ){ // // 1: 创建ajax对象 XMLHttpRequest // var xhr = new XMLH ...
- RxJava2.0教程
尝试在新的项目中,引用一些流行的优秀的开源框架,在简书上偶然发现一篇很棒的写RxJava 2.0的帖子,个人认为非常适合Android开发者,你可以先知道怎么使用,然后再弄清楚里面做了哪些事情,例如可 ...
- 【Linux】替换文本中的字符
替换单个文本中的字符,有两种方法,如下详解 VIM替换 打开文件 vim test.txt 替换 :%s/原字符串/替换字符串/gg 直接替换 sed -i 's/原字符串/替换字符串/g' `ls ...
- JavaScript | window浏览器对象模型
Js Window - 获取浏览器窗口 全局变量是window对象的属性 全局函数是window对象的方法 HTML DOM的document是window对象属性之一 window.document ...
- 自己动手,制作真正的.net Framework 3.5 SP1离线安装包(转)
.NET Framework 3.5 SP1发布了,兴冲冲…下载,当然是完全离线安装包.net Framework 3.5 Service pack 1(Full Package) 231MB,网络慢 ...
- JS 毫秒日期相互转换 JS获取 今天 明天 昨天的日期
var dd = new Date(); var AddDayCount = 0; //0 今天 1 明天 -1 昨天 以此类推 dd.setDate(dd.getDate() + AddDayCou ...
- php中的重载以及几个常用的魔术方法示例
在面向对象语言中,有一个很重要的概念——overload,即重载.所谓重载,一般是用于在一个类内实现若干重载的方法,这些方法的名称相同而参数形式不同.但是,在php中,这个概念跟大多面向对象语言中的“ ...