传送门

Description

有一个取数的游戏。初始时,给出一个环,环上的每条边上都有一个非负整数。这些整数中至少有一个0。然后,将一枚硬币放在环上的一个节点上。两个玩家就是以这个放硬币的节点为起点开始这个游戏,两人轮流取数,取数的规则如下:

(1)选择硬币左边或者右边的一条边,并且边上的数非0;

(2)将这条边上的数减至任意一个非负整数(至少要有所减小);

(3)将硬币移至边的另一端。

如果轮到一个玩家走,这时硬币左右两边的边上的数值都是0,那么这个玩家就输了。

如下图,描述的是Alice和Bob两人的对弈过程,其中黑色节点表示硬币所在节点。结果图(d)中,轮到Bob走时,硬币两边的边上都是0,所以Alcie获胜。

(a)Alice (b)Bob (c)Alice (d)Bob

现在,你的任务就是根据给出的环、边上的数值以及起点(硬币所在位置),判断先走方是否有必胜的策略。

Input

第一行一个整数N(N≤20),表示环上的节点数。

第二行N个数,数值不超过30,依次表示N条边上的数值。硬币的起始位置在第一条边与最后一条边之间的节点上。

Output

仅一行。若存在必胜策略,则输出“YES”,否则输出“NO”。

Sample Input_1

   

Sample Output_1

YES

Sample Input_2

  

Sample Output_2

NO

Hint

(N≤20)

Solution

  博弈论。有如下性质:

   定理一:先手决定取数的方向。

    证明:如图一:(图一)

      从绿色点开始取数,不妨设先手想顺时针方向取数,那么只需要把权值为1的边取成0即可。后手只能继续顺时针取数,因为不能取边权0的一侧。

      一般的,先手只要将自己想要的方向取成0,那么就可以决定自己取数的方向。

   定理2:取数过程的方向是单向的,一旦确定不会折返。

     证明:

      如图一,依然不妨设先手想顺指针取数,那么他先取了边权为1的边,此时后手只能继续顺时针取数,不管他将2取成1还是0,先手如果想继续顺时针取数,那么只需要继续取边权为3的边为0即可,无需考虑后手上一步是怎么取得。因为下一条边取成0之后,无论如何都不会返回上一条边了。

      一般的,先手只要把自己经过的边取成0,就可以保证过程单向不会折返。

   由定理1、2易推知定理3:在取数过程中,每个人会取到哪个位置是唯一确定的。

   由定理2可以推知定理4:在取数过程中,谁的“前进道路”的下一条边是零边谁就会输。

     证明:由定理2可知方向是单向的。如果前面是0边,则无法往前走,由定理二也无法往后走(只需要上一手的人把上一条边取成0)。于是会输。

  综合定理1、2、3、4可以知道,只要出发点的取数方向一侧的线段离0边距离为偶数,则必胜,否则必输。由于先手可以选择顺时针或逆时针,所以枚举两个方向,如果有必胜策略则必胜。如果都会输则GG。

Code

#include<cstdio>
#define maxn 25 inline void qr(int &x) {
char ch=getchar();int f=;
while(ch>''||ch<'') {
if(ch=='-') f=-;
ch=getchar();
}
while(ch>=''&&ch<='') x=(x<<)+(x<<)+(ch^),ch=getchar();
x*=f;
return;
} inline int max(const int &a,const int &b) {if(a>b) return a;else return b;}
inline int min(const int &a,const int &b) {if(a<b) return a;else return b;}
inline int abs(const int &x) {if(x>) return x;else return -x;} inline void swap(int &a,int &b) {
int c=a;a=b;b=c;return;
} int n,MU[maxn]; int main() {
qr(n);for(int i=;i<=n;++i) qr(MU[i]);
if(MU[]) for(int i=;i<=n;++i) {
if(MU[i]==) {
if(!(i&)) {
putchar('Y');putchar('E');putchar('S');putchar('\n');return ;
}
break;
}
}
if(MU[n]) for(int i=n;i;--i) {
if(MU[i]==) {
if(!((n-i+)&)) {
putchar('Y');putchar('E');putchar('S');putchar('\n');return ;
}
break;
}
}
putchar('N');putchar('O');putchar('\n');
return ;
}

【博弈论】【P1288】取数游戏II的更多相关文章

  1. 洛谷P1288 取数游戏II(博弈)

    洛谷P1288 取数游戏II 先手必胜的条件需要满足如下中至少 \(1\) 条: 从初始位置向左走到第一个 \(0\) 的位置,经过边的数目为偶数(包含 \(0\) 这条边). 从初始位置向右走到第一 ...

  2. 洛谷P1288 取数游戏II[博弈论]

    题目描述 有一个取数的游戏.初始时,给出一个环,环上的每条边上都有一个非负整数.这些整数中至少有一个0.然后,将一枚硬币放在环上的一个节点上.两个玩家就是以这个放硬币的节点为起点开始这个游戏,两人轮流 ...

  3. 洛谷P1288 取数游戏II

    题目描述 有一个取数的游戏.初始时,给出一个环,环上的每条边上都有一个非负整数.这些整数中至少有一个0.然后,将一枚硬币放在环上的一个节点上.两个玩家就是以这个放硬币的节点为起点开始这个游戏,两人轮流 ...

  4. 洛谷P1288 取数游戏II 题解 博弈论

    题目链接:https://www.luogu.org/problem/P1288 首先,如果你的一边的边是 \(0\) ,那么你肯定走另一边. 那么你走另一边绝对不能让这条边有剩余,因为这条边有剩余的 ...

  5. P1288 取数游戏II

    luogu原题 最近刚学了博弈论,拿来练练手qwq 其实和数值的大小并没有关系 我们用N/P态来表示必胜/必败状态 先在草稿纸上探究硬币♦在最左侧(其实左右侧是等价的)的一条长链的N/P态,设链长为n ...

  6. 【洛谷】P1288 取数游戏II

    题目链接:https://www.luogu.org/problemnew/show/P1288 题意:中文题面不赘述啦. 题解:代码很好写,其实就是判断边数是否为偶数.先手确定方向其实都是一样的,但 ...

  7. 洛谷 P1288 取数游戏II

    奇奇怪怪的游戏,不多写了 #include<cstdio> ]; int main() { int i; scanf("%d",&n); ;i<=n;i+ ...

  8. 【洛谷P1288】取数游戏II

    取数游戏II 题目链接 显然,由于一定有一个0,我们可以求出从初始点到0的链的长度 若有一条链长为奇数,则先手可以每次取完一条边上所有的数, 后手只能取另一条边的数,先手必胜: 反之若没有奇数链,后手 ...

  9. luoguP1288 取数游戏II [博弈论]

    题目描述 有一个取数的游戏.初始时,给出一个环,环上的每条边上都有一个非负整数.这些整数中至少有一个0.然后,将一枚硬币放在环上的一个节点上.两个玩家就是以这个放硬币的节点为起点开始这个游戏,两人轮流 ...

随机推荐

  1. Selenium安装(二)

    安装python 安装Selenium之前首先来说一下Python,python是一门动态性语言,python的编写比较灵活,简洁,开发效率高.因此以python结合selenium来进行自动化测试. ...

  2. 自己来编写一份 Python 脚本 第一版

    解决问题 我们已经探索了 Python 语言中的许多部分,现在我们将通过设计并编写一款程序来了解如何把这些部分组合到一起.这些程序一定是能做到一些有用的事情.这节的Python教程就是教大家方法去学习 ...

  3. eclipse格式化

    一.eclipse格式化的必要性 1.便于阅读 2.便于协作 二.eclipse格式化快捷键 ctrl shift + F

  4. JAVA基础学习之路(八)[1]String类的基本特点

    String类的两种定义方式: 直接赋值 通过构造方法赋值 //直接赋值 public class test2 { public static void main(String args[]) { S ...

  5. 反片语 (Ananagrams,UVa 156)

    题目描述: #include <iostream> #include <string> #include <cctype> #include <vector& ...

  6. jQuery 对象 与 原生 DOM 对象 相互转换

    区别 jQuery 选择器得到的 jQuery对象 和 原生JS 中的document.getElementById() document.querySelector取得的 DOM对象 是两种不同类型 ...

  7. Python3 Tkinter-Grid

    1.创建 from tkinter import * root=Tk() lb1=Label(root,text='Hello') lb2=Label(root,text='Grid') lb1.gr ...

  8. 4. hadoop启动脚本分析

    4. hadoop启动脚本分析 1. hadoop的端口 ``` 50070 //namenode http port 50075 //datanode http port 50090 //2name ...

  9. oracle常用函数总结

    Oracle常用函数总结 ---oracle常用函数-----一.数值型常用函数----取整数--select floor(10.1) from dual;--将n四舍五入,保留小数点后m位(默认情况 ...

  10. Hadoop 版本 生态圈 MapReduce模型

    忘的差不多了, 先补概念, 然后开始搭建集群实战 ... . 一 Hadoop版本 和 生态圈 1. Hadoop版本 (1) Apache Hadoop版本介绍 Apache的开源项目开发流程 : ...