模板:数论 & 数论函数 & 莫比乌斯反演
作为神秘奖励……?也是为了方便背。
所有的除法都是向下取整。
数论函数:
\((f*g)(n)=\sum_{d|n}f(d)g(\frac{n}{d})\)
\((Id*\mu)(n)=\sum_{d|n}\mu(d)\frac{n}{d}=\phi(n)\)
筛法求积性函数:
int su[N],he[N],miu[N],phi[N],c[N],d[N],tot;
void Euler(int n){
miu[1]=d[1]=c[1]=phi[1]=1;
for(int i=2;i<=n;i++){
if(!he[i]){
su[++tot]=i;
miu[i]=-1;
phi[i]=i-1;
d[i]=2;
c[i]=1;
}
for(int j=1;j<=tot;j++){
int p=su[j];
if(i*p>n)break;
he[i*p]=1;
if(i%p==0){
miu[i*p]=0;
phi[i*p]=phi[i]*p;
d[i*p]=d[i]/(c[i]+1)*(c[i]+2);
c[i*p]=c[i]+1;
break;
}else{
miu[i*p]=miu[i]*miu[p];
phi[i*p]=phi[i]*phi[p];
d[i*p]=d[i]*d[p];
c[i*p]=1;
}
}
}
}
莫比乌斯反演:
\(n=\sum_{d|n}\phi(d)\)
\([n=1]=\sum_{d|n}\mu(d)\)
推导:
\(\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)=p]=\sum_{d=1}^{min(\frac{n}{p},\frac{m}{p})}\mu(d)*\frac{\frac{n}{p}}{d}*\frac{\frac{m}{p}}{d}\)
例题+推导:BZOJ1101 & 洛谷3455:[POI2007]ZAP
\(\sum_{i=1}^n\sum_{j=1}^mgcd(i,j)=\sum_{d=1}^{min(n,m)}\phi(d)*\frac{n}{d}*\frac{m}{d}\)
例题+推导:BZOJ2005:[Noi2010]能量采集
\(\sum_{i=1}^n\sum_{j=1}^mlcm(i,j)=\sum_{k=1}^{min(n,m)}sum(\frac{n}{k})sum(\frac{m}{k})\sum_{d|k}d^2\mu(d)\frac{k}{d}\)
例题+推导:BZOJ2693:jzptab——题解
杜教筛:
令\(M(n)=∑_{i=1}^nμ(i)\)
则\(M(n)=1−∑_{i=2}^nM(\frac{n}{i})\)
令\(S(n)=∑_{i=1}^n\phi(i)\)
则\(S(n)=∑_{i=1}^ni−∑_{i=2}^nS(\frac{n}{i})\)
推导:http://blog.csdn.net/samjia2000/article/details/70147436
+++++++++++++++++++++++++++++++++++++++++++
+本文作者:luyouqi233。 +
+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/ +
+++++++++++++++++++++++++++++++++++++++++++
模板:数论 & 数论函数 & 莫比乌斯反演的更多相关文章
- 【CCPC-Wannafly Winter Camp Day3 (Div1) F】小清新数论(莫比乌斯反演+杜教筛)
点此看题面 大致题意: 让你求出\(\sum_{i=1}^n\sum_{j=1}^n\mu(gcd(i,j))\). 莫比乌斯反演 这种题目,一看就是莫比乌斯反演啊!(连莫比乌斯函数都有) 关于莫比乌 ...
- [bzoj4659\2694]Lcm_数论_莫比乌斯反演
Lcm bzoj-4659 bzoj-2694 题目大意:给出A,B,考虑所有满足l<=a<=A,l<=b<=B,且不存在n>1使得n^2同时整除a和b的有序数对(a,b ...
- 【bzoj 3601】一个人的数论 (莫比乌斯反演+伯努利数)
题解: (吐槽:网上题解那个不严谨猜测真是没谁了……关键是还猜得辣么准……) 直接化简到求和那一段: $f_{d}(n)=\sum_{t|n}\mu(t)t^{d}\sum_{i=1}^{\frac{ ...
- 【BZOJ 2671】 2671: Calc (数论,莫比乌斯反演)
2671: Calc Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 303 Solved: 157 Description 给出N,统计满足下面条件 ...
- BZOJ4176 Lucas的数论 【莫比乌斯反演 + 杜教筛】
题目 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目"求Sigma(f(i)),其中1<=i<=N", ...
- bzoj 4176: Lucas的数论【莫比乌斯反演+杜教筛】
首先由这样一个结论: \[ d(ij)=\sum_{p|i}\sum_{q|j}[gcd(p,q)==1] \] 然后推反演公式: \[ \sum_{i=1}^{n}\sum_{j=1}^{n}\su ...
- 【bzoj3601】一个人的数论(莫比乌斯反演+拉格朗日插值)
传送门 题意: 求\[ \sum_{i=1}^{n}i^d[gcd(i,n)=1] \] 思路: 我们对上面的式子进行变换,有: \[ \begin{aligned} &\sum_{i=1}^ ...
- 【数论】莫比乌斯反演Mobius inversion
本文同步发布于作业部落,若想体验更佳,请点此查看原文.//博客园就是渣,连最基本的符号都打不出来.
- 【BZOJ4407】于神之怒加强版(莫比乌斯反演)
[BZOJ4407]于神之怒加强版(莫比乌斯反演) 题面 BZOJ 求: \[\sum_{i=1}^n\sum_{j=1}^mgcd(i,j)^k\] 题解 根据惯用套路 把公约数提出来 \[\sum ...
随机推荐
- thinkphp5
分页: thinkphp5分页默认只带page参数 在使用form表单method='get'传递关键字来筛选: 保证每次刷新依旧带上筛选参数 但遇到分页时,下面的分页默认自带page,没有之前筛选的 ...
- hdu2553N皇后问题(dfs,八皇后)
N皇后问题 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submi ...
- Android 修改系统默认density
如你所知在Anroid N 中,系统添加了多个级别的密度值供用户选择. 系统的默认的值就是 ro.sf.lcd_density 同时其他级别的默认值的大小基础也是以默认值为基础,然后乘以不同的比例得到 ...
- LeetCode 445——两数相加 II
1. 题目 2. 解答 2.1 方法一 在 LeetCode 206--反转链表 和 LeetCode 2--两数相加 的基础上,先对两个链表进行反转,然后求出和后再进行反转即可. /** * Def ...
- leetcode个人题解——#20 Valid Parentheses
class Solution { public: bool isValid(string s) { stack<char> brackts; ; i < s.size(); i++) ...
- HDU 1403 Longest Common Substring(后缀自动机——附讲解 or 后缀数组)
Description Given two strings, you have to tell the length of the Longest Common Substring of them. ...
- return阻止js继续向下执行
终止JS运行有如下几种可能: 终止函数的运行的方式有两种 在函数中使用return,则当遇到return时,函数终止执行,控制权继续向下运行 在函数中使用try-catch异常处理,需要结束时,使用t ...
- Java中的死锁问题
死锁问题: 例如有两个线程, 线程1与线程2. 线程1在执行的过程中, 要锁定对象1, 2才能完成整个操作, 首先锁定对象1, 再锁定对象2. 线程2在执行的过程中, 要锁定对象2, 1才能完成整个操 ...
- LintCode-66.二叉树的前序遍历
二叉树的前序遍历 给出一棵二叉树,返回其节点值的前序遍历. 样例 给出一棵二叉树 {1,#,2,3}, 返回 [1,2,3]. 挑战 你能使用非递归实现么? 标签 递归 二叉树 二叉树遍历 非递归 c ...
- 不同品牌交换机设置telnet方法
H3C交换机:1.设置telnet system-view super password level 3 cipher ******telnet server enable user-interfac ...