link

其实可以用$sum(i,j)$表示从$i$到$1$的$k$次方的值,然后就是$lca$的基本操作

注意,能一起干的事情就一起搞,要不会超时

#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#define int long long
#define mod 998244353
using namespace std;
const int N=;
inline int read(){
int f=,ans=;char c=getchar();
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){ans=ans*+c-'';c=getchar();}
return f*ans;
}
struct node{
signed u,v,nex;
}x[N<<];
signed n,m,cnt;
int sum[N][];
signed head[N],deep[N],fa[N][];
void add(signed u,signed v){
x[cnt].u=u,x[cnt].v=v,x[cnt].nex=head[u],head[u]=cnt++;
}
int ksm(int a,int b){
if(a==) return ;
int ans=;
a%=mod;
while(b){
if(b&) ans*=a,ans%=mod;
a*=a,a%=mod;
b>>=;
}return ans;
}
void dfs(signed f,signed fath){
deep[f]=deep[fath]+,fa[f][]=fath;
for(signed i=;i<=;i++) sum[f][i]=sum[fath][i]+ksm(deep[f],i);
for(signed i=;(<<i)<=deep[f];++i) fa[f][i]=fa[fa[f][i-]][i-];
for(signed i=head[f];i!=-;i=x[i].nex){
if(x[i].v==fath) continue;
dfs(x[i].v,f);
}
}
int Log2[N];
signed lca(signed u,signed v){
if(deep[u]<deep[v]) swap(u,v);
for(signed i=Log2[u];i>=;--i)
if(deep[u]-(<<i)>=deep[v]) u=fa[u][i];
if(u==v) return u;
for(signed i=Log2[v];i>=;--i){
if(fa[u][i]==fa[v][i]) continue;
u=fa[u][i],v=fa[v][i];
}return fa[u][];
}
signed q;
bool ff;
signed main(){
memset(head,-,sizeof(head));
n=read();
for(signed i=;i<n;++i){
int u=read(),v=read();
add(u,v),add(v,u);
}deep[]=-;Log2[]=;
for(int i=;i<=n;++i) Log2[i]=Log2[i>>]+;
dfs(,);
q=read();
while(q--){
int u=read(),v=read(),k=read();
int ls=lca(u,v);
printf("%d\n",(((sum[u][k]+sum[v][k]-*sum[ls][k]+ksm(deep[ls],k))%mod+mod)%mod));
}
return ;
}

[BJOI2018]求和的更多相关文章

  1. 【BZOJ5293】[BJOI2018]求和(前缀和,LCA)

    [BZOJ5293][BJOI2018]求和(前缀和,LCA) 题面 BZOJ 洛谷 题解 送分题??? 预处理一下\(k\)次方的前缀和. 然后求个\(LCA\)就做完了?... #include& ...

  2. bzoj5293: [Bjoi2018]求和

    题目链接 bzoj5293: [Bjoi2018]求和 题解 暴力 对于lca为1的好坑啊.... 代码 #include<cmath> #include<cstdio> #i ...

  3. P4427 [BJOI2018]求和

    P4427 [BJOI2018]求和 同[TJOI2018]教科书般的扭曲虚空 懒得写了(雾 #include<bits/stdc++.h> #define il inline #defi ...

  4. BZOJ5293: [Bjoi2018]求和 树上差分

    Description master 对树上的求和非常感兴趣.他生成了一棵有根树,并且希望多次询问这棵树上一段路径上所有节点深度的k  次方和,而且每次的k 可能是不同的.此处节点深度的定义是这个节点 ...

  5. 【刷题】BZOJ 5293 [Bjoi2018]求和

    Description master 对树上的求和非常感兴趣.他生成了一棵有根树,并且希望多次询问这棵树上一段路径上所有节点深度的k 次方和,而且每次的k 可能是不同的.此处节点深度的定义是这个节点到 ...

  6. BZOJ5293:[BJOI2018]求和(LCA,差分)

    Description master 对树上的求和非常感兴趣.他生成了一棵有根树,并且希望多次询问这棵树上一段路径上所有节点深度的k  次方和,而且每次的k 可能是不同的.此处节点深度的定义是这个节点 ...

  7. LCA+差分【p4427】[BJOI2018]求和

    Description master 对树上的求和非常感兴趣.他生成了一棵有根树,并且希望多次询问这棵树上一段路径上所有节点深度的\(k\) 次方和,而且每次的\(k\) 可能是不同的.此处节点深度的 ...

  8. [BJOI2018]求和(树链剖分)

    题目描述 master 对树上的求和非常感兴趣.他生成了一棵有根树,并且希望多次询问这棵树上一段路径上所有节点深度的 kkk 次方和,而且每次的 kkk 可能是不同的.此处节点深度的定义是这个节点到根 ...

  9. Luogu P4427 [BJOI2018]求和

    这是一道巨狗题,我已无力吐槽为什么我怎么写都不过 我们对于这种无修改的边权题目有一个经典的树上差分套路: \(ans=sum_x+sum_y-2\cdot sum_{LCA(x,y)}\) 这里的\( ...

  10. [BZOJ5293][BJOI2018]求和(倍增)

    裸的树上倍增. #include<cstdio> #include<cstring> #include<algorithm> #define rep(i,l,r) ...

随机推荐

  1. OSG-交互

    本文转至http://www.cnblogs.com/shapherd/archive/2010/08/10/osg.html 作者写的比较好,再次收藏,希望更多的人可以看到这个文章 互联网是是一个相 ...

  2. Monkey用真机做测试的步骤

    1 必备条件 1) 手机需要先获取root权限: 2) 手机和电脑相连(电脑可以访问手机里面的文件) 2  操作步骤 1) 使用adb devices 命令查看电脑手机是否相连: 下图表示手机已连上电 ...

  3. [JSON].connectionValue()

    语法: [JSON].connectionValue() 说明: 将对象的所有键值接连成新的字符串值 返回: [String] 示例: Set a = toJson() c = Array(1,2,3 ...

  4. lintcode First Unique Number In Stream

    First Unique Number In Stream 描述: Given a continuous stream of numbers, write a function that return ...

  5. Scala学习笔记之Actor多线程与线程通信的简单例子

    题目:通过子线程读取每个文件,并统计单词数,将单词数返回给主线程相加得出总单词数 package review import scala.actors.{Actor, Future} import s ...

  6. 关于excle导数据的一些代码笔记

    package com.bonc.util; import java.io.File; import java.io.FileInputStream; import java.io.FileOutpu ...

  7. 嵌入式码农的10年Bug调试经验,值得一看

    下面这些都是我经历过的会导致难点bug的问题: 1.事件顺序.在处理事件时,提出下列问题会很有成效:事件可以以不同的顺序到达吗?如果我们没有接收到此事件会怎么样?如果此事件接连发生两次会怎么样?哪怕通 ...

  8. c# 调取 c++ dll____c#调用dll

    1.以海康摄像头dll为例.(文章转载https://www.cnblogs.com/smartsensor/p/4343744.html) 海康SDK编程指南 目前使用的海康SDK包括IPC_SDK ...

  9. Java package和import语句

    Java中的package和import语句 如果你想让其他人访问你的类,你一定要把你写的类放到正确的子目录下. 在Java里,对于位于包中的类是这样管理的: Java编译器把包对应于文件系统的目录管 ...

  10. 团队作业7——第二次项目冲刺(Beta版本)-第三篇

    1.工作分工: 团队成员 分工 郭达22120 项目整合,后台代码 刘德培44060 前台界面优化 石浩洋22061 前台界面优化 曾繁钦22056 前台界面优化.测试 孙斌22030 后台代码 2. ...