题目

P4463 [国家集训队] calc

集训队的题目真是做不动呀\(\%>\_<\%\)

朴素方程

设\(f_{i,j}\)为前\(i\)个数值域\([1,j]\),且序列递增的总贡献,则有:

\[f_{i,j}=f_{i-1,j-1}*j+f{i,j-1}
\]

由于递增序列可以全排列的:\(ans=f_{n,A}×n!\)

时间复杂度\(O(nA)\)

证明一

设\(f_{i,j}\)为关于\(j\)的\(2i\)次多项式,则\(f_{i-1,j-1}*j\)为关于\(j\)的2i-1次多项式,\(f_{i,j-1}\)为关于\(j\)的\(2i\)次多项式

通过归纳法证明出\(f_{i,j}\)为关于\(j\)的\(2i\)次多项式

证明二

设\(f_{i,j}\)为关于\(j\)的\(g(i)\)次多项式,变式:

\[f_{i,j}-f(i,j-1)=f_{i-1,j-1}*j
\]

则有\(g(i)-1=g(i-1)+1\longrightarrow g(i)=g(i-1)+2\),故\(f_{i,j}\)为关于\(j\)的\(2i\)次多项式

具体做法

综上我们已经证明出了\(f_{i,j}\)为关于\(j\)的\(2i\)次多项式,所以仅需\(2i\)项,通过拉格朗日插值法就能得出这个多项式的系数表示法,从而代入\(j=A\)求解即可

而\((i,f_{n,i})\),就相当于多项式在坐标系上的一点,我们需要求出\(2n+1\)个点去确定多项式\(k_0~k_{2n}\)这些系数

Code

#include<bits/stdc++.h>
typedef int LL;
const LL maxn=2e3;
LL A,n,mod,N;
LL y[maxn],f[maxn][maxn];
inline LL Pow(LL base,LL b){
LL ret(1);
while(b){
if(b&1) ret=1ll*ret*base%mod; base=1ll*base*base%mod; b>>=1;
}return ret;
}
inline LL Calc(LL x){
LL ret(0);
for(LL i=1;i<=N;++i){
LL p(y[i]),q(1);
for(LL j=1;j<=N;++j){
if(j!=i){
p=1ll*p*(x-j+mod)%mod;
q=1ll*q*(i-j+mod)%mod;
}
}
ret=(ret+1ll*p*Pow(q,mod-2)%mod)%mod;
}
return ret;
}
int main(){
scanf("%d%d%d",&A,&n,&mod);
N=(n<<1)+1;
for(LL i=0;i<=N;++i) f[0][i]=1;
for(LL i=1;i<=n;++i)
for(LL j=1;j<=N;++j)
f[i][j]=(1ll*f[i-1][j-1]*j%mod+f[i][j-1])%mod;
LL C(1);
for(LL i=2;i<=n;++i) C=1ll*C*i%mod;
for(LL i=1;i<=N;++i) y[i]=f[n][i];
if(A<=N)
printf("%d",1ll*f[n][A]*C%mod);
else
printf("%d",1ll*Calc(A)*C%mod);
return 0;
}

[国家集训队] calc(动规+拉格朗日插值法)的更多相关文章

  1. P4463 [国家集训队] calc(拉格朗日插值)

    传送门 设\(dp[i][j]\)为考虑\(i\)个数,其中最大值不超过\(j\)的答案,那么转移为\[dp[i][j]=dp[i-1][j-1]\times i\times j+dp[i][j-1] ...

  2. [国家集训队] calc

    嘟嘟嘟 这道题dp虽然不难,但是我还是没推出来,感觉最近脑子不太好用啊. 于是就跑去问神仙gjx(全国前三!)了.(外出集训真是好) 神仙不愧是神仙,一会儿就想出来了,而且方法还比网上的题解好懂. d ...

  3. BZOJ2655 calc(动态规划+拉格朗日插值法)

    考虑暴力dp:f[i][j]表示i个数值域1~j时的答案.考虑使其值域++,则有f[i][j]=f[i][j-1]+f[i-1][j-1]*i*j,边界f[i][i]=i!*i!. 注意到值域很大,考 ...

  4. Luogu P4463 [国家集训队] calc

    WJMZBMR的题果然放在几年后看来仍然挺神,提出了一种独特的优化DP的方式 首先我们想一个暴力DP,先定下所有数的顺序(比如强制它递增),然后最后乘上\(n!\)种排列方式就是答案了 那么我们容易想 ...

  5. p4463 [国家集训队] calc

    分析 代码 #include<bits/stdc++.h> using namespace std; ][],Ans; inline int pw(int x,int p){ ; whil ...

  6. [BZOJ2655]calc(拉格朗日插值法+DP)

    2655: calc Time Limit: 30 Sec  Memory Limit: 512 MBSubmit: 428  Solved: 246[Submit][Status][Discuss] ...

  7. BZOJ2655 Calc - dp 拉格朗日插值法

    BZOJ2655 Calc 参考 题意: 给定n,m,mod,问在对mod取模的背景下,从[1,m]中选出n个数相乘可以得到的总和为多少. 思路: 首先可以发现dp方程 ,假定dp[m][n]表示从[ ...

  8. BZOJ 2038: [2009国家集训队]小Z的袜子(hose)

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 7676  Solved: 3509[Subm ...

  9. bzoj2152 / P2634 [国家集训队]聪聪可可(点分治)

    P2634 [国家集训队]聪聪可可 淀粉质点分治板子 边权直接 mod 3 直接点分治统计出所有的符合条件的点对再和总方案数约分 至于约分.....gcd搞搞就好辣 #include<iostr ...

随机推荐

  1. LoadLibrary失敗,GetLastError 返回127錯誤

    該原因一般是由於DLL或其依賴的DLL使用了高版本的API,而在低系統中運行時,找不到該函數所引發的錯誤. 比如:該函數:InterlockedExchange64, 看MSDN: Client Re ...

  2. JVM难学?那是因为你没认真看完这篇文章(转)

    一:虚拟机内存图解 JAVA程序运行与虚拟机之上,运行时需要内存空间.虚拟机执行JAVA程序的过程中会把它管理的内存划分为不同的数据区域方便管理. 虚拟机管理内存数据区域划分如下图: 数据区域分类: ...

  3. 如果 date_field = TRUNC(date_field) 就说明时分秒为0(也就是不包含),否则就包含时分秒

    如果 date_field = TRUNC(date_field) 就说明时分秒为0(也就是不包含),否则就包含时分秒

  4. iOS-UIScrollView拉伸效果

    解决办法: 比如登录界面是可以上下拉伸的(微信),在ScrollView里调用一下这个方法即可. scrollView.alwaysBounceVertical = YES;

  5. CentOS 安装 dotnetcore

    参考官方教程:https://www.microsoft.com/net/core#linuxcentos 安装.NET CORE SDK sudo yum install libunwind lib ...

  6. Asp.Net WebApi核心对象解析

    在接着写Asp.Net WebApi核心对象解析(下篇)之前,还是一如既往的扯扯淡,元旦刚过,整个人还是处于晕的状态,一大早就来处理系统BUG,简直是坑爹(好在没让我元旦赶过来该BUG),队友挖的坑, ...

  7. Scala 中我们长见到=> 解析下

    =>这符号其实是映射转化的意思,个人理解,可能不准确, var increase = (x: Int) => x + 1 increase(10) res0: Int = 11 意思就是你 ...

  8. python类的相关知识第一部分

    一.类的相关概念 (1).什么是类 具有同种属性的对象称为类,是个抽象的概念.比如说:汽车.人.狗.神: (2).什么是对象或实例 日常生活中的所有东西都是对象,是类的实例化.比如说:推土车是汽车的实 ...

  9. MongoDB-2:MongoDB添加、删除、修改

    一.简介 MongoDB是一个高性能,开源,无模式的文档型数据库,是当前NoSQL数据库产品中最热门的一种.数据被分组存储在数据集中,被称为一个集合(Collenction)和对于存储在MongoDB ...

  10. Django HttpResponse对象详解

    HttpResponse对象 Django服务器接收到客户端发送过来的请求后,会将提交上来的这些数据封装成一个HttpRequest对象传给视图函数.那么视图函数在处理完相关的逻辑后,也需要返回一个响 ...